%I #4 Apr 15 2018 10:47:26
%S 1,20,53,238,1102,5570,28594,149206,788373,4194079,22418762,120168046,
%T 645271922,3468733058,18659308842,100416125479,540536282078,
%U 2910157350115,15669370152621,84374942124034,454351598306349
%N Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C Column 4 of A302889.
%H R. H. Hardin, <a href="/A302885/b302885.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 7*a(n-1) -6*a(n-2) -5*a(n-3) -32*a(n-4) -130*a(n-5) +86*a(n-6) +185*a(n-7) +394*a(n-8) +1235*a(n-9) -26*a(n-10) -384*a(n-11) -751*a(n-12) -6365*a(n-13) -1429*a(n-14) -3066*a(n-15) -469*a(n-16) +4458*a(n-17) +2506*a(n-18) +1808*a(n-19) +2590*a(n-20) +761*a(n-21) -73*a(n-22) +453*a(n-23) -497*a(n-24) -885*a(n-25) -107*a(n-26) +36*a(n-27) -329*a(n-28) -40*a(n-29) +74*a(n-30) -28*a(n-31) -22*a(n-32) +28*a(n-33) +20*a(n-34) +4*a(n-35) for n>37
%e Some solutions for n=5
%e ..0..1..1..0. .0..0..0..0. .0..0..1..1. .0..1..1..1. .0..0..0..1
%e ..1..1..1..1. .1..0..0..0. .0..0..1..1. .1..1..1..0. .1..0..0..0
%e ..1..1..1..0. .1..0..0..1. .1..1..1..1. .0..0..1..1. .1..0..1..1
%e ..0..1..1..1. .0..0..0..1. .0..1..1..0. .1..0..0..0. .0..0..1..1
%e ..0..1..1..0. .1..0..0..1. .1..1..1..0. .1..0..0..0. .0..0..1..1
%Y Cf. A302889.
%K nonn
%O 1,2
%A _R. H. Hardin_, Apr 15 2018