login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^k)^k.
3

%I #10 Apr 14 2018 14:49:14

%S 1,2,4,9,17,33,61,110,193,335,570,955,1582,2586,4185,6706,10646,16757,

%T 26178,40587,62503,95637,145445,219929,330766,494898,736858,1092027,

%U 1611185,2367079,3463490,5048009,7329935,10605211,15290942,21973641,31475620,44946859,63991639,90842560

%N Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^k)^k.

%C Partial sums of A026007.

%H Alois P. Heinz, <a href="/A302832/b302832.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F G.f.: (1/(1 - x))*exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)).

%F From _Vaclav Kotesovec_, Apr 13 2018: (Start)

%F a(n) ~ exp((3/2)^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(5/12) * 3^(2/3) * sqrt(Pi) * Zeta(3)^(1/6) * n^(1/3)).

%F a(n) ~ (2*n/(3*Zeta(3)))^(1/3) * A026007(n).

%F a(n) ~ erfi((3/2)^(2/3) * Zeta(3)^(1/6) * n^(1/3)) / 2^(13/12).

%F (End)

%p b:= proc(n) option remember;

%p add((-1)^(n/d+1)*d^2, d=numtheory[divisors](n))

%p end:

%p g:= proc(n) option remember;

%p `if`(n=0, 1, add(b(k)*g(n-k), k=1..n)/n)

%p end:

%p a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+g(n)) end:

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Apr 13 2018

%t nmax = 39; CoefficientList[Series[1/(1 - x) Product[(1 + x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]

%t nmax = 39; CoefficientList[1/(1 - x) Series[Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x]

%Y Cf. A000009, A026007, A036469, A091360, A302831.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Apr 13 2018