%I #4 Apr 13 2018 13:21:08
%S 8,52,220,1494,9050,51476,317216,1927184,11448173,69437015,420077495,
%T 2524870148,15256502166,92149840338,555558632280,3353951180376,
%U 20247214339311,122165463939008,737365570767880,4450613461508152
%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C Column 4 of A302820.
%H R. H. Hardin, <a href="/A302816/b302816.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) +5*a(n-2) +103*a(n-3) -472*a(n-4) -610*a(n-5) -2942*a(n-6) +13393*a(n-7) +22816*a(n-8) +28876*a(n-9) -141328*a(n-10) -330217*a(n-11) -66329*a(n-12) +377837*a(n-13) +1715614*a(n-14) -104581*a(n-15) +1536966*a(n-16) +94707*a(n-17) -1090428*a(n-18) -3432836*a(n-19) -11886952*a(n-20) -1508464*a(n-21) -14901268*a(n-22) +5677017*a(n-23) +10105176*a(n-24) +488958*a(n-25) +8686347*a(n-26) -515880*a(n-27) +32921724*a(n-28) -16944996*a(n-29) +8021194*a(n-30) -9073688*a(n-31) -9801184*a(n-32) +1534061*a(n-33) +4632827*a(n-34) +9839496*a(n-35) -13588411*a(n-36) +104477*a(n-37) -2495477*a(n-38) +6200005*a(n-39) -2301638*a(n-40) +161554*a(n-41) -470448*a(n-42) +560428*a(n-43) -87808*a(n-44) -103968*a(n-45) +28864*a(n-46) +5888*a(n-47) -2560*a(n-48) +256*a(n-49) for n>51
%e Some solutions for n=5
%e ..0..1..0..1. .0..0..0..1. .0..0..0..0. .0..0..1..1. .0..1..1..0
%e ..0..1..0..1. .0..1..0..1. .1..0..1..0. .1..0..1..0. .1..1..0..0
%e ..0..0..1..0. .0..0..1..1. .1..0..1..1. .1..0..1..1. .1..0..1..0
%e ..0..0..0..0. .0..1..0..1. .0..1..0..0. .1..0..0..1. .1..1..1..0
%e ..0..1..0..1. .0..1..0..0. .1..0..1..0. .0..0..1..0. .0..0..1..0
%Y Cf. A302820.
%K nonn
%O 1,1
%A _R. H. Hardin_, Apr 13 2018