login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A302770 a(n) = (4*n-2)*((n-1)*a(n-1) + ((n-2)!)^2), with a(1) = 0, n > 1. 1
0, 6, 130, 5516, 397800, 43770672, 6828599232, 1434021390720, 390054681930240, 133398762996833280, 56027485989309542400, 28349908516327342694400, 17009945189463951728640000, 11940981535393590884843520000, 9696077008988591505023631360000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..15.

Travis Sherman, Summation of Glaisher- and Apery-like Series, University of Arizona, May 23 2000, p. 14, (3.79) - (3.83).

FORMULA

a(n) = f3(n)*((n-1)!)^2, where f3(n) corresponds to the z values such that Sum_{k>=0} 1/(binomial(2*k,k)*(k+n))) = x*Pi*sqrt(3) - y*Pi^2 - z. (See examples for connection with a(n) in terms of material at Links section.)

f2(n) corresponds to the y values, so f2(n) = (1/9)*((2*n-1)!/((n-1)!)^2).

EXAMPLE

Examples ((3.79) - (3.83)) at page 14 in Links section as follows, respectively.

For n=1, f3(1) = 0, so a(1) = 0.

For n=2, f3(2) = 6, so a(2) = 6.

For n=3, f3(3) = 65/2, so a(3) = 130.

For n=4, f3(4) = 1379/9, so a(4) = 5516.

For n=5, f3(5) = 5525/8, so a(5) = 397800.

MATHEMATICA

RecurrenceTable[{a[n] == (4*n-2) * ((n-1)*a[n-1] + (n-2)!^2), a[1] == 0}, a, {n, 1, 15}] (* Vaclav Kotesovec, Apr 13 2018 *)

Table[FullSimplify[Pi^2*Gamma[2*n]/9 - Gamma[n]^2 * HypergeometricPFQ[{1, n, n}, {n + 1/2, n + 1}, 1/4]/n], {n, 1, 15}] (* Vaclav Kotesovec, Apr 13 2018 *)

nmax = 15; Table[CoefficientList[Expand[FunctionExpand[ Table[-Sum[1/(Binomial[2*j, j]*(j + m)), {j, 0, Infinity}], {m, 1, nmax}]]], Pi][[n, 1]]*(n - 1)!^2, {n, 1, nmax}] (* Vaclav Kotesovec, Apr 13 2018 *)

CROSSREFS

Cf. A302769.

Sequence in context: A000907 A188718 A077031 * A337971 A281402 A137038

Adjacent sequences:  A302767 A302768 A302769 * A302771 A302772 A302773

KEYWORD

nonn

AUTHOR

Detlef Meya, Apr 13 2018

EXTENSIONS

More terms from Altug Alkan, Apr 13 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 11 09:59 EDT 2021. Contains 343788 sequences. (Running on oeis4.)