login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of total dominating sets in the n-Andrásfai graph.
1

%I #21 Feb 09 2024 03:59:46

%S 1,11,131,1365,12883,113935,967455,8013983,65410751,529283583,

%T 4261449727,34213027327,274240586751,2196272295935,17580376055807,

%U 140687025184767,1125685164621823,9006288735567871,72053745778425855,576444534576513023,4611617848860868607

%N Number of total dominating sets in the n-Andrásfai graph.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AndrasfaiGraph.html">Andrásfai Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotalDominatingSet.html">Total Dominating Set</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (23,-210,996,-2664,4032,-3200,1024).

%F a(n) = (8^(n + 1) + (2^n*(n - 2) - 4^(n + 1))*(3*n - 1))/16 - 1 for n > 1.

%F a(n) = 23*a(n-1) - 210*a(n-2) + 996*a(n-3) - 2664*a(n-4) + 4032*a(n-5) - 3200*a(n-6) + 1024*a(n-7) for n > 8.

%F G.f.: x*(-1 + 12*x - 88*x^2 + 334*x^3 - 706*x^4 + 928*x^5 - 672*x^6 + 256*x^7)/((-1 + 2*x)^3*(-1 + 4*x)^2*(1 - 9*x + 8*x^2)).

%t Join[{1}, Table[(8^(n + 1) + (2^n (n - 2) - 4^(n + 1) ) (3 n - 1) - 16)/16, {n, 2, 20}]]

%t Join[{1}, LinearRecurrence[{23, -210, 996, -2664, 4032, -3200, 1024}, {11, 131, 1365, 12883, 113935, 967455, 8013983}, 20]]

%t CoefficientList[Series[(-1 + 12 x - 88 x^2 + 334 x^3 - 706 x^4 + 928 x^5 - 672 x^6 + 256 x^7)/((-1 + 2 x)^3 (-1 + 4 x)^2 (1 - 9 x + 8 x^2)), {x, 0, 20}], x]

%Y Cf. A285272, A287429, A302762.

%K nonn,easy

%O 1,2

%A _Eric W. Weisstein_, Apr 12 2018

%E a(9)-a(21) from _Andrew Howroyd_, Apr 18 2018