login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302755
Strongly prime-additive numbers: numbers n with at least 2 distinct prime factors that can be represented as n = Sum_{p|n} p^e_p, with e_p > 0 and p^e_p < n < p^(e_p+1).
2
228, 3115, 190233, 1090918, 11352818, 32647591, 98437335, 670402467, 809609110, 869424040, 1008317892, 8911808588, 37104085671, 243006777356, 297252832082
OFFSET
1,1
COMMENTS
The first 3 terms were given in the paper by Erdős & Hegyvári. They were found by P. Massias.
Subsequence of A302753.
a(16) > 5.4*10^11. - Giovanni Resta, Aug 23 2018
LINKS
Paul Erdős and Norbert Hegyvári, On prime-additive numbers, Studia Sci. Math. Hungar., Vol. 27, No. 1-2 (1992), pp. 207-212. Review.
EXAMPLE
228 = 2^2 * 3 * 19 = 2^7 + 3^4 + 19.
3115 = 5 * 7 * 89 = 5^4 + 7^4 + 89.
190233 = 3^2 * 23 * 919 = 3^11 + 23^3 + 919.
1090918 = 2 * 199 * 2741 = 2^20 + 199^2 + 2741.
11352818 = 2 * 41 * 138449 = 2^23 + 41 ^4 + 138449.
32647591 = 29 * 59 * 19081 = 29^5 + 59^4 + 19081.
98437335 = 3 * 5 * 6562489 = 3^16 + 5^11 + 6562489.
670402467 = 3^3 * 7^2 * 506729 = 3^18 + 7^10 + 506729.
809609110 = 2 * 5 * 211 * 257 * 1493 = 2^29 + 5^12 + 211^3 + 257^3 + 1493^2.
869424040 = 2^3 * 5 * 19 * 197 * 5807 = 2^29 + 5^12 + 19^6 + 197^3 + 5807^2.
1008317892 = 2^2 * 3 * 84026491 = 2^29 + 3^18 + 84026491.
8911808588 = 2^2 * 683 * 3262009 = 2^33 + 683^3 + 3262009.
37104085671 = 3 * 89 * 138966613 = 3^22 + 89^5 + 138966613.
243006777356 = 2^2 * 7 * 8678813477 = 2^37 + 7^13 + 8678813477.
297252832082 = 2 * 29 * 5125048829 = 2^38 + 29^7 + 5125048829.
MATHEMATICA
p[n_] := First[Transpose[FactorInteger[n]]]; powerMax[p_, n_] :=
Module[{k = 0, nn = n}, While[nn > 1, nn /= p; k++]; p^(k - 1)]; a[n_] := Module[{primes = p[n]}, np = Length[primes]; s = 0; If[np > 1, Do[s += powerMax[primes[[k]], n], {k, 1, np}]]; s]; aQ[n_] := a[n] == n; seq={}; Do[If[aQ[n], AppendTo[seq, n]], {n, 2, 100000}]; seq
CROSSREFS
Sequence in context: A053174 A335270 A103837 * A064245 A201238 A220624
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Apr 12 2018
EXTENSIONS
a(9)-a(15) from Giovanni Resta, Aug 23 2018
STATUS
approved