login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squarefree numbers whose prime indices are prime numbers.
24

%I #22 Feb 06 2021 15:56:37

%S 1,3,5,11,15,17,31,33,41,51,55,59,67,83,85,93,109,123,127,155,157,165,

%T 177,179,187,191,201,205,211,241,249,255,277,283,295,327,331,335,341,

%U 353,367,381,401,415,431,451,461,465,471,509,527,537,545,547,561,563

%N Squarefree numbers whose prime indices are prime numbers.

%C A prime index of n is a number m such that prime(m) divides n.

%C From _David A. Corneth_, Feb 05 2021: (Start)

%C Product_{p in A006450} (p + 1)/p where primepi(p) <= 10^k for k = 3..9 respectively is

%C 2.3221793975627545730894469494385382768...

%C 2.3962097386916566795581118542505513350...

%C 2.4423525010102788492232765893521739629...

%C 2.4739349879225654126399615785205666552...

%C 2.4969363158706022367680967716958174889...

%C 2.5144436325229538304870684054018856517...

%C 2.5282263225826916578696019016723107071... (End)

%H Andrew Howroyd, <a href="/A302590/b302590.txt">Table of n, a(n) for n = 1..1000</a>

%F Intersection of A005117 and A076610.

%F Sum_{n>=1} 1/a(n) = Product_{p in A006450} (1 + 1/p) converges since the sum of the reciprocals of A006450 converges. - _Amiram Eldar_, Feb 02 2021

%e Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.

%e 001: {}

%e 003: {{1}}

%e 005: {{2}}

%e 011: {{3}}

%e 015: {{1},{2}}

%e 017: {{4}}

%e 031: {{5}}

%e 033: {{1},{3}}

%e 041: {{6}}

%e 051: {{1},{4}}

%e 055: {{2},{3}}

%e 059: {{7}}

%e 067: {{8}}

%e 083: {{9}}

%e 085: {{2},{4}}

%e 093: {{1},{5}}

%e 109: {{10}}

%e 123: {{1},{6}}

%e 127: {{11}}

%e 155: {{2},{5}}

%e 157: {{12}}

%e 165: {{1},{2},{3}}

%t primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t Select[Range[600],SquareFreeQ[#]&&And@@PrimeQ/@primeMS[#]&]

%o (PARI) ok(n)={issquarefree(n) && !#select(p->!isprime(primepi(p)), factor(n)[,1])} \\ _Andrew Howroyd_, Aug 26 2018

%Y Cf. A000961, A001222, A003963, A005117, A006450, A007716, A056239, A076610, A275024, A281113, A302242, A302243, A302568.

%K nonn

%O 1,2

%A _Gus Wiseman_, Apr 10 2018