The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302573 Primitive unitary abundant numbers (definition 1): unitary abundant numbers (A034683) all of whose proper unitary divisors are unitary deficient. 2
 70, 840, 924, 1092, 1386, 1428, 1430, 1596, 1638, 1870, 2002, 2090, 2142, 2210, 2394, 2470, 2530, 2970, 2990, 3190, 3230, 3410, 3510, 3770, 4030, 4070, 4510, 4730, 5170, 5390, 5830, 13860, 15015, 16380, 17160, 18480, 19635, 20020, 21420, 21840, 21945, 22440 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The unitary analog of A071395. Prasad & Reddy proved that n is a primitive unitary abundant number if and only if 0 < usigma(n) - 2n < 2n/p^e, where p^e is the largest prime power that divides n. REFERENCES J. Sandor, D. S. Mitrinovic, and B. Crstici, Handbook of Number Theory, Vol. 1, Springer, 2006, p. 115. LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 V. Siva Rama Prasad and D. Ram Reddy, On primitive unitary abundant numbers, Indian J. Pure Appl. Math., Vol. 21, No. 1 (1990) pp. 40-44. EXAMPLE 70 is primitive unitary abundant since it is unitary abundant (usigma(70) = 144 > 2*70), and all of its unitary divisors are unitary deficient. The smaller unitary abundant numbers, 30, 42, 66, are not primitive, since in each 6 is a unitary divisor, and 6 is not unitary deficient. MATHEMATICA maxPower[n_]:=Max[Power @@@ FactorInteger[n]]; usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; d[n_]:=usigma[n]-2n; punQ[n_] := d[n]>0 && d[n]< 2n/maxPower[n]; Select[Range[1000], punQ] CROSSREFS Cf. A034448, A034683, A071395, A129487, A302574. Sequence in context: A265726 A258375 A306953 * A251933 A061170 A125114 Adjacent sequences:  A302570 A302571 A302572 * A302574 A302575 A302576 KEYWORD nonn AUTHOR Amiram Eldar, Apr 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 12:30 EDT 2021. Contains 343947 sequences. (Running on oeis4.)