OFFSET
1,2
COMMENTS
Geometrically, the partial sums of A092182 may be interpreted as 5-dimensional hexacosichoronal hyperpyramidal numbers. The hexacosichoron is a convex regular 4-D polytope with Schlaefli symbol {3,3,5}.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(n) = Sum_{k=1..n} A092182(k).
From Colin Barker, Aug 15 2018: (Start)
G.f.: x*(1 + 115*x + 357*x^2 + 107*x^3) / (1 - x)^6.
a(n) = (n*(12 + n - 64*n^2 + 5*n^3 + 58*n^4)) / 12.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
MATHEMATICA
Accumulate[LinearRecurrence[{5, -10, 10, -5, 1}, {1, 120, 947, 3652, 9985}, 30]] (* or *) LinearRecurrence[ {6, -15, 20, -15, 6, -1}, {1, 121, 1068, 4720, 14705, 36981}, 30] (* Harvey P. Dale, May 04 2024 *)
PROG
(PARI) Vec(x*(1 + 115*x + 357*x^2 + 107*x^3) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Aug 15 2018
(PARI) a(n) = (n*(12 + n - 64*n^2 + 5*n^3 + 58*n^4)) / 12 \\ Colin Barker, Aug 15 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alejandro J. Becerra Jr., Aug 15 2018
STATUS
approved