Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Aug 18 2018 08:54:01
%S 1,0,1,2,10,48,288,1984,15660,139312,1380484,15080152,180017780,
%T 2331038048,32537274756,486942025288,7777172706308,132025174277392,
%U 2373753512469972,45059504242538328,900498975768121972,18898334957168597184,415537355533831049572,9552918187197519923176
%N Expansion of 1/(2 - Sum_{k>=0} k!*x^k/(1 + x)^(k+1)).
%C Invert transform of A000166.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Subfactorial.html">Subfactorial</a>
%F G.f.: 1/(1 - Sum_{k>=1} A000166(k)*x^k).
%F G.f.: 1/(2 - 1/(1 - x^2/(1 - 2*x - 4*x^2/(1 - 4*x - 9*x^2/(1 - 6*x - 16*x^2/(1 - ...)))))), a continued fraction.
%F a(n) ~ exp(-1) * n! * (1 + 2/n^2 + 6/n^3 + 35/n^4 + 256/n^5 + 2187/n^6 + 21620/n^7 + 243947/n^8 + 3098528/n^9 + 43799819/n^10 + ...), for coefficients see A305275. - _Vaclav Kotesovec_, Aug 18 2018
%t nmax = 23; CoefficientList[Series[1/(2 - Sum[k! x^k/(1 + x)^(k + 1), {k, 0, nmax}]), {x, 0, nmax}], x]
%t nmax = 23; CoefficientList[Series[1/(1 - Sum[Round[k!/Exp[1]] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
%t a[0] = 1; a[n_] := a[n] = Sum[Subfactorial[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
%Y Cf. A000166, A051295, A051296, A259869, A259870, A305275.
%K nonn
%O 0,4
%A _Ilya Gutkovskiy_, Aug 15 2018