Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Aug 27 2018 01:53:02
%S 1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,27,28,
%T 30,31,32,33,34,35,36,38,40,41,42,44,45,46,48,49,50,51,53,54,55,56,57,
%U 59,60,62,63,64,66,67,68,69,70,72,75,76,77,80,81,82,83
%N Products of any power of 2 with prime numbers of prime-power index, i.e., prime numbers p of the form p = prime(q^k), for q prime, k >= 1.
%C A prime index of n is a number m such that prime(m) divides n.
%H Andrew Howroyd, <a href="/A302492/b302492.txt">Table of n, a(n) for n = 1..1000</a>
%e Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset multisystems.
%e 01: {}
%e 02: {{}}
%e 03: {{1}}
%e 04: {{},{}}
%e 05: {{2}}
%e 06: {{},{1}}
%e 07: {{1,1}}
%e 08: {{},{},{}}
%e 09: {{1},{1}}
%e 10: {{},{2}}
%e 11: {{3}}
%e 12: {{},{},{1}}
%e 14: {{},{1,1}}
%e 15: {{1},{2}}
%e 16: {{},{},{},{}}
%e 17: {{4}}
%e 18: {{},{1},{1}}
%e 19: {{1,1,1}}
%e 20: {{},{},{2}}
%e 21: {{1},{1,1}}
%e 22: {{},{3}}
%e 23: {{2,2}}
%e 24: {{},{},{},{1}}
%t Select[Range[100],Or[#===1,And@@PrimePowerQ/@PrimePi/@DeleteCases[FactorInteger[#][[All,1]],2]]&]
%o (PARI) ok(n)={!#select(p->p<>2&&!isprimepower(primepi(p)), factor(n)[,1])} \\ _Andrew Howroyd_, Aug 26 2018
%Y Cf. A000961, A001222, A003963, A005117, A007716, A050361, A056239, A076610, A270995, A275024, A279784, A281113, A295935, A301762, A302242, A302243, A302493.
%K nonn
%O 1,2
%A _Gus Wiseman_, Apr 08 2018