Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jan 16 2024 22:05:43
%S 1,0,0,0,1,26,32596,34359509614,1180591620442534312297,
%T 85070591730234605240519066638188154620,
%U 1645504557321206042154968331851433202636630333819989444275003856
%N Number of families of 4-subsets of an n-set that cover every element.
%C Number of simple 4-uniform hypergraphs of order n without isolated vertices.
%H Andrew Howroyd, <a href="/A302396/b302396.txt">Table of n, a(n) for n = 0..18</a>
%F a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k) * 2^binomial(n-k,4).
%e For n=5 all families with at least two 4-sets will cover every element.
%p seq(add((-1)^k * binomial(n,k) * 2^binomial(n-k,4), k = 0..n), n=0..12)
%t Array[Sum[(-1)^k*Binomial[#, k] 2^Binomial[# - k, 4], {k, 0, #}] &, 11, 0] (* _Michael De Vlieger_, Apr 07 2018 *)
%o (PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n,k)*2^binomial(n-k,4)); \\ _Michel Marcus_, Apr 07 2018
%o (GAP) Flat(List([0..10],n->Sum([0..n],k->(-1)^k*Binomial(n,k)*2^Binomial(n-k,4)))); # _Muniru A Asiru_, Apr 07 2018
%Y Column 4 of A299471.
%Y Cf. A302394.
%K nonn,easy
%O 0,6
%A _Brendan McKay_, Apr 07 2018