%I #4 Apr 06 2018 12:40:03
%S 3,161,2886,56541,1089035,20993054,404225195,7787623959,150008013842,
%T 2889619130491,55662670608009,1072229459666190,20654344779041771,
%U 397864432000232871,7664058367627889686,147632676645411073113
%N Number of nX5 0..1 arrays with every element equal to 1, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C Column 5 of A302381.
%H R. H. Hardin, <a href="/A302378/b302378.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A302378/a302378.txt">Empirical recurrence of order 84</a>
%F Empirical recurrence of order 84 (see link above)
%e Some solutions for n=5
%e ..0..0..0..1..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
%e ..0..1..1..0..0. .0..1..1..1..1. .1..0..1..1..0. .1..0..0..1..1
%e ..0..0..1..1..0. .1..1..1..0..1. .0..1..0..1..1. .1..1..0..0..1
%e ..1..0..1..1..1. .1..0..0..1..1. .1..1..0..0..1. .1..1..1..1..0
%e ..1..1..0..1..1. .0..0..0..0..0. .1..1..1..1..0. .0..0..1..0..0
%Y Cf. A302381.
%K nonn
%O 1,1
%A _R. H. Hardin_, Apr 06 2018