%I #7 May 26 2019 16:03:13
%S 24,43,62,80,81,99,118,136,141,155,160,179,192,197,216,232,251,253,
%T 258,270,277,288,307,314,344,349,359,368,375,378,397,405,415,434,440,
%U 459,466,471,476,495,496,528,532,547,557,566,567,584,586,593,603,623,640,645,648,664,684,694,701,713,736,745,750
%N Numbers that are the sum of 3 cubes > 1.
%H <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>
%e 118 is in the sequence because 118 = 3^3 + 3^3 + 4^3.
%t max = 750; f[x_] := Sum[x^(k^3), {k, 2, 10}]^3; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, max}]]
%t Total/@Tuples[Range[2,10]^3,3]//Union (* _Harvey P. Dale_, May 26 2019 *)
%Y Cf. A003072, A004825, A025456, A258865, A294073.
%K nonn
%O 1,1
%A _Ilya Gutkovskiy_, Apr 06 2018