Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 May 29 2024 12:25:29
%S 0,0,1,1,3,4,10,13,25,34,59,80,127,172,260,349,505,673,946,1248,1711,
%T 2238,3010,3902,5162,6637,8663,11051,14253,18051,23047,28988,36677,
%U 45840,57538,71485,89082,110062,136269,167487,206138,252132,308640,375777,457698
%N a(n) = Sum of (Y(2,p)^2) over the partitions p of n, Y(2,p) = number of part sizes with multiplicity 2 or greater in p.
%C This sequence is part of the contribution to the b^2 term of C_{1-b,2}(q) for(1-b,2)-colored partitions - partitions in which we can label parts any of an indeterminate 1-b colors, but are restricted to using only 2 of the colors per part size. This formula is known to match the Han/Nekrasov-Okounkov hooklength formula truncated at hooks of size two up to the linear term in b.
%C It is of interest to enumerate and determine specific characteristics of partitions of n, considering each partition individually.
%H Alois P. Heinz, <a href="/A302347/b302347.txt">Table of n, a(n) for n = 0..2000</a>
%H Guo-Niu Han, <a href="https://arxiv.org/abs/0805.1398">The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications</a>, arXiv:0805.1398 [math.CO], 2008.
%H Guo-Niu Han, <a href="https://doi.org/10.5802/aif.2515">The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications</a>, Annales de l'institut Fourier, Tome 60 (2010) no. 1, pp. 1-29.
%H W. J. Keith, <a href="https://doi.org/10.1007/s11139-015-9704-x">Restricted k-color partitions</a>, Ramanujan Journal (2016) 40: 71.
%F a(n) = Sum_{p in P(n)} (H(2,p)^2 + 2*A024786 - 2*A024788), where P(n) is the set of partitions of n, and H(2,p) is the hooks of length 2 in partition p.
%F G.f: (q^2*(1+q^4))/((1-q^2)*(1-q^4))*Product_{j>=1} 1/(1-q^j).
%F a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (8*Pi^2). - _Vaclav Kotesovec_, May 22 2018
%e For a(6), we sum over partitions of six. For each partition, we count 1 for each part which appears more than once, then square the total in each partition.
%e 6............0^2 = 0
%e 5,1..........0^2 = 0
%e 4,2..........0^2 = 0
%e 4,1,1........1^2 = 1
%e 3,3..........1^2 = 1
%e 3,2,1........0^2 = 0
%e 3,1,1,1......1^2 = 1
%e 2,2,2........1^2 = 1
%e 2,2,1,1......2^2 = 4
%e 2,1,1,1,1....1^2 = 1
%e 1,1,1,1,1,1..1^2 = 1
%e --------------------
%e Total.............10
%p b:= proc(n, i, p) option remember; `if`(n=0 or i=1, (
%p `if`(n>1, 1, 0)+p)^2, add(b(n-i*j, i-1,
%p `if`(j>1, 1, 0)+p), j=0..n/i))
%p end:
%p a:= n-> b(n$2, 0):
%p seq(a(n), n=0..60); # _Alois P. Heinz_, Apr 05 2018
%t Array[Total[Count[Split@ #, _?(Length@ # > 1 &)]^2 & /@ IntegerPartitions[#]] &, 44] (* _Michael De Vlieger_, Apr 07 2018 *)
%t b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, (
%t If[n > 1, 1, 0] + p)^2, Sum[b[n - i*j, i - 1,
%t If[j > 1, 1, 0] + p], {j, 0, n/i}]];
%t a[n_] := b[n, n, 0];
%t a /@ Range[0, 60] (* _Jean-François Alcover_, Jun 06 2021, after _Alois P. Heinz_ *)
%o (Python)
%o def sum_square_freqs_greater_one(freq_list):
%o tot = 0
%o for f in freq_list:
%o count = 0
%o for i in f:
%o if i > 1:
%o count += 1
%o tot += count*count
%o return tot
%o def frequencies(partition, n):
%o tot = 0
%o freq_list = []
%o i = 0
%o for p in partition:
%o freq = [0 for i in range(n+1)]
%o for i in p:
%o freq[i] += 1
%o for f in freq:
%o if f == 0:
%o tot += 1
%o freq_list.append(freq)
%o return freq_list
%Y Cf. A024786, A024788, A302300.
%K nonn
%O 0,5
%A _Emily Anible_, Apr 05 2018