login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{p in P} (Sum_{k_j = 1} 1)^2, where P is the set of partitions of n, and the k_j are the frequencies in p.
2

%I #32 Mar 24 2023 14:21:30

%S 0,1,1,5,6,12,21,33,50,79,116,169,246,346,487,675,927,1254,1702,2263,

%T 3014,3966,5210,6766,8795,11303,14531,18521,23583,29803,37654,47231,

%U 59206,73792,91867,113778,140788,173377,213289,261318,319764,389846,474745,576164

%N a(n) = Sum_{p in P} (Sum_{k_j = 1} 1)^2, where P is the set of partitions of n, and the k_j are the frequencies in p.

%C This sequence is part of the contribution to the b^2 term of C_{1-b,2}(q) for(1-b,2)-colored partitions - partitions in which we can label parts any of an indeterminate 1-b colors, but are restricted to using only 2 of the colors per part size. This formula is known to match the Han/Nekrasov-Okounkov hooklength formula truncated at hooks of size two up to the linear term in b.

%C It is of interest to enumerate and determine specific characteristics of partitions of n, considering each partition individually.

%H Alois P. Heinz, <a href="/A302300/b302300.txt">Table of n, a(n) for n = 0..4000</a>

%H Guo-Niu Han, <a href="https://arxiv.org/abs/0805.1398">The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications</a>, arXiv:0805.1398 [math.CO], 2008.

%H Guo-Niu Han, <a href="https://doi.org/10.5802/aif.2515">The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications</a>, Annales de l'institut Fourier, Tome 60 (2010) no. 1, pp. 1-29.

%H W. J. Keith, <a href="https://doi.org/10.1007/s11139-015-9704-x">Restricted k-color partitions</a>, Ramanujan Journal (2016) 40: 71.

%F a(n) = Sum_{p in P} (Sum_{k_j = 1} 1)^2, where P is the set of partitions of n, and k_j are the frequencies in p.

%e For a(6), we sum over partitions of six. For each partition, we count 1 for each part which appears once, then square the total in each partition.

%e 6............1^2 = 1

%e 5,1..........2^2 = 4

%e 4,2..........2^2 = 4

%e 4,1,1........1^2 = 1

%e 3,3..........0^2 = 0

%e 3,2,1........3^2 = 9

%e 3,1,1,1......1^2 = 1

%e 2,2,2........0^2 = 0

%e 2,2,1,1......0^2 = 0

%e 2,1,1,1,1....1^2 = 1

%e 1,1,1,1,1,1..0^2 = 0

%e --------------------

%e Total.............21

%p b:= proc(n, i, p) option remember; `if`(n=0 or i=1, (

%p `if`(n=1, 1, 0)+p)^2, add(b(n-i*j, i-1,

%p `if`(j=1, 1, 0)+p), j=0..n/i))

%p end:

%p a:= n-> b(n$2, 0):

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Apr 05 2018

%t Array[Total@ Map[Count[Split@ #, _?(Length@ # == 1 &)]^2 &, IntegerPartitions[#]] &, 43] (* _Michael De Vlieger_, Apr 05 2018 *)

%t b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, (

%t If[n == 1, 1, 0] + p)^2, Sum[b[n - i*j, i - 1,

%t If[j == 1, 1, 0] + p], {j, 0, n/i}]];

%t a[n_] := b[n, n, 0];

%t a /@ Range[0, 60] (* _Jean-François Alcover_, Jun 06 2021, after _Alois P. Heinz_ *)

%o (Python)

%o def frequencies(partition, n):

%o tot = 0

%o freq_list = []

%o i = 0

%o for p in partition:

%o freq = [0 for i in range(n+1)]

%o for i in p:

%o freq[i] += 1

%o for f in freq:

%o if f == 0:

%o tot += 1

%o freq_list.append(freq)

%o return freq_list

%o def sum_square_freqs_of_one(freq_part):

%o tot = 0

%o for f in freq_part:

%o count = 0

%o for i in f:

%o if i == 1:

%o count += 1

%o tot += count*count

%o return tot

%o import sympy.combinatorics

%o def A302300(n): # rewritten by _R. J. _Mathar_, 2023-03-24

%o a =0

%o if n ==0 :

%o return 0

%o part = sympy.combinatorics.IntegerPartition([n])

%o partlist = []

%o while True:

%o part = part.next_lex()

%o partlist.append(part.partition)

%o if len(part.partition) <=1 :

%o break

%o freq_part = frequencies(partlist, n)

%o return sum_square_freqs_of_one(freq_part)

%o for n in range(20): print(A302300(n))

%Y Cf. A024786, A197126.

%K nonn

%O 0,4

%A _Emily Anible_, Apr 04 2018