|
|
A302278
|
|
T(n,k) = number of n X k 0..1 arrays with every element equal to 1, 2 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
|
|
13
|
|
|
0, 1, 0, 1, 3, 0, 2, 7, 10, 0, 3, 10, 22, 23, 0, 5, 27, 29, 79, 61, 0, 8, 45, 74, 89, 269, 162, 0, 13, 98, 162, 283, 353, 942, 421, 0, 21, 193, 363, 649, 1219, 941, 3401, 1103, 0, 34, 379, 782, 1621, 3621, 3854, 3316, 12283, 2890, 0, 55, 778, 1766, 4209, 14125, 15862, 14639
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
Table starts
0 1 1 2 3 5 8 13 21 34
0 3 7 10 27 45 98 193 379 778
0 10 22 29 74 162 363 782 1766 3953
0 23 79 89 283 649 1621 4209 9563 25179
0 61 269 353 1219 3621 14125 38410 108141 360173
0 162 942 941 3854 15862 72083 229708 713848 2948380
0 421 3401 3316 14639 69601 384916 1354563 4386347 20677591
0 1103 12283 12016 63093 385242 3027442 11370253 43394297 258471515
0 2890 43006 34060 222254 1809350 17837758 75667277 325745362 2460590443
|
|
LINKS
|
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4)
k=3: [order 18]
k=4: [order 72] for n > 73
Empirical for row n:
n=1: a(n) = a(n-1) + a(n-2)
n=2: a(n) = a(n-1) + 3*a(n-2) - 4*a(n-4) for n > 5
n=3: [order 16] for n > 18
n=4: [order 64] for n > 66
|
|
EXAMPLE
|
Some solutions for n=5, k=4:
0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0
1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1
1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1
0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|