login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 4 X n 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1

%I #7 Apr 05 2018 04:10:23

%S 8,128,818,5922,40296,284428,1984001,13858979,96989344,677924227,

%T 4741556252,33160693907,231908861764,1621957375639,11343626172102,

%U 79335892155345,554866483249174,3880672405834657,27141030302203992

%N Number of 4 X n 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

%C Row 4 of A302265.

%H R. H. Hardin, <a href="/A302268/b302268.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) +37*a(n-2) -87*a(n-3) -705*a(n-4) +490*a(n-5) +6647*a(n-6) -2273*a(n-7) -37443*a(n-8) +18499*a(n-9) +137351*a(n-10) -119456*a(n-11) -307421*a(n-12) +497358*a(n-13) +283070*a(n-14) -1382386*a(n-15) +550943*a(n-16) +2688669*a(n-17) -2529947*a(n-18) -3862337*a(n-19) +4815881*a(n-20) +4396960*a(n-21) -5833953*a(n-22) -4259372*a(n-23) +4902946*a(n-24) +3609580*a(n-25) -2867379*a(n-26) -2613565*a(n-27) +1071860*a(n-28) +1546436*a(n-29) -178195*a(n-30) -696136*a(n-31) -34724*a(n-32) +210182*a(n-33) +28519*a(n-34) -40047*a(n-35) -7799*a(n-36) +6305*a(n-37) +1510*a(n-38) -1015*a(n-39) -211*a(n-40) +30*a(n-41) +22*a(n-42) +12*a(n-43) -4*a(n-44) for n>45.

%e Some solutions for n=5:

%e 0 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0

%e 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0

%e 0 0 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0

%e 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1

%Y Cf. A302265.

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 04 2018