Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Apr 11 2018 04:59:22
%S 1,2,3,5,7,8,11,11,15,15,19,19,23,23,27,27,31,31,35,35,39,39,43,43,47,
%T 47,51,51,55,55,59,59,63,63,67,67,71,71,75,75,79,79,83,83,87,87,91,91,
%U 95,95,99,99,103,103,107,107,111,111,115,115,119,119,123,123
%N Maximum remainder of p*q divided by p+q with 0 < p <= q <= n.
%F Conjecture: a(n) = 2*(n - 2) - (-1)^n for n > 6.
%F From _Altug Alkan_ and _Robert Israel_, Apr 05 2018: (Start)
%F Proof of conjecture:
%F For n >= 3 odd, we do have p=n-2, q=n, p*q = n^2-2*n = (n-3)/2 * (p+q) + 2*n-3, so a remainder of 2*n-3 is possible.
%F The only possible p <= q <= n with p+q-1 > 2*n-3 are p=n-1,q=n and p=n,q=n, neither of which can improve on this:
%F For p=q=n, p*q = (n-1)/2 * (p+q) + n with n <= 2*n-3.
%F For p=n-1, q=n, p*q = (n-1)/2 * (p+q) + (n-1)/2 with (n-1)/2 < n
%F For n >= 8 even, we have all the cases that worked for n-1, with maximum remainder 2*(n-1)-3 = 2*n-5, and additional possibilities q=n,p=n-3 to n, which don't improve on this:
%F For p=n-3, q=n, p*q = (n/2-1)*(p+q) + n/2-3 with n/2-3 < 2*n-5
%F For p=n-2, q=n, p*q = (n/2-1)*(p+q) + n-2 with n-2 < 2*n-5
%F For p=n-1, q=n, p*q = (n/2-1)*(p+q) + 3*n/2-1 with 3*n/2-1 < 2*n-5.
%F For p=n, q=n, p*q = (n/2)*(p+q) + 0.
%F (End)
%e For n=2 the three possible pairs of positive numbers are enumerated in the following table
%e (i,j) (i*j) (i+j) (i*j) mod (i+j)
%e (1,1) 1 2 1
%e (1,2) 2 3 2
%e (2,2) 4 4 0
%e The greatest remainder is 2 then a(2)=2, and similarly for n=3 the corresponding table is
%e (i,j) (i*j) (i+j) (i*j) mod (i+j)
%e (1,1) 1 2 1
%e (1,2) 2 3 2
%e (2,2) 4 4 0
%e (1,3) 3 4 3
%e (2,3) 6 5 1
%e (3,3) 9 6 3
%e The greatest remainder is 3, then a(3)=3.
%p 1, 2, 3, 5, 7, 8, seq(2*(n-2)-(-1)^n, n=7..100); # _Robert Israel_, Apr 05 2018
%t a[n_]:=Table[Table[Mod[i*j, i + j], {i, 1, j}], {j, 1, n}]//Flatten//Max;
%t Table[a[n], {n, 1, 64}]
%o (PARI) a(n) = vecmax(vector(n, q, vecmax(vector(q, p, (p*q) % (p+q))))); \\ _Michel Marcus_, Apr 05 2018
%o (PARI) a(n) = if(n<7,(n+2)*(n+4)\9, 2*(n-2)-(-1)^n); \\ _Altug Alkan_, Apr 07 2018
%Y Cf. A168269, A302446.
%K nonn,easy
%O 1,2
%A _Andres Cicuttin_, Apr 03 2018