login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^(k*j))/(1 + x^j).
0

%I #5 Mar 29 2019 15:51:20

%S 1,1,0,1,-1,0,1,-1,1,0,1,-1,0,-2,0,1,-1,0,0,2,0,1,-1,0,-1,0,-3,0,1,-1,

%T 0,-1,2,-1,4,0,1,-1,0,-1,1,-2,1,-5,0,1,-1,0,-1,1,0,1,-1,6,0,1,-1,0,-1,

%U 1,-1,0,-2,1,-8,0,1,-1,0,-1,1,-1,2,-1,4,0,10,0,1,-1,0,-1,1,-1,1,-2,1,-4,0,-12,0

%N Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^(k*j))/(1 + x^j).

%F G.f. of column k: Product_{j>=1} (1 + x^(k*j))/(1 + x^j).

%F For asymptotics of column k see comment from _Vaclav Kotesovec_ in A145707.

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 0, -1, -1, -1, -1, -1, ...

%e 0, 1, 0, 0, 0, 0, ...

%e 0, -2, 0, -1, -1, -1, ...

%e 0, 2, 0, 2, 1, 1, ...

%e 0, -3, -1, -2, 0, -1, ...

%t Table[Function[k, SeriesCoefficient[Product[(1 + x^(k i))/(1 + x^i), {i, 1, n}], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten

%t Table[Function[k, SeriesCoefficient[QPochhammer[-1, x^k]/QPochhammer[-1, x], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten

%Y Columns k=1-10 give: A000007, A081360, A109389, A261734, A133563, A261736, A113297, A261735, A261733, A145707.

%Y Main diagonal gives A081362.

%Y Cf. A286653, A286656, A290307.

%K sign,tabl

%O 0,14

%A _Ilya Gutkovskiy_, Apr 03 2018