Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Apr 11 2020 15:28:28
%S 0,2,-1,2,-6,24,-120,720,-5040,40320,-362880,3628800,-39916800,
%T 479001600,-6227020800,87178291200,-1307674368000,20922789888000,
%U -355687428096000,6402373705728000,-121645100408832000,2432902008176640000,-51090942171709440000
%N Hurwitz logarithm of natural numbers 1,2,3,4,5,...
%C In the ring of Hurwitz sequences all members have offset 0.
%H Xing Gao and William F. Keigher, <a href="https://doi.org/10.1080/00927872.2016.1226885">Interlacing of Hurwitz series</a>, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885. See Ex. 2.16.
%H N. J. A. Sloane, <a href="/A302189/a302189.txt">Maple programs for operations on Hurwitz sequences</a>
%F E.g.f. is log of Sum_{n >= 0} (n+1)*x^n/n!.
%p # first load Maple commands for Hurwitz operations from link
%p s:=[seq(n,n=1..64)];
%p Hlog(s);
%o (Sage)
%o A = PowerSeriesRing(QQ, 'x')
%o f = A(list(range(1,30))).ogf_to_egf().log()
%o print(list(f.egf_to_ogf()))
%o # _F. Chapoton_, Apr 11 2020
%Y Cf. A133942.
%K sign
%O 0,2
%A _N. J. A. Sloane_ and William F. Keigher, Apr 12 2018