login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 8*(n-1)*(2*n-3)*a(n-1) + ((-1)^n)*(n-1)*Product_{k=0..n-3} (2*k+1)^2 with a(0) = 0.
1

%I #37 Nov 22 2024 06:51:34

%S 0,0,1,46,5547,1241628,447041205,236032398090,171832342201695,

%T 164958902421881400,201909733543855989225,306902783112141390315750,

%U 567156347906609067457417875,1252281213909270325492296700500,3255931157464155279716218995508125

%N a(n) = 8*(n-1)*(2*n-3)*a(n-1) + ((-1)^n)*(n-1)*Product_{k=0..n-3} (2*k+1)^2 with a(0) = 0.

%H Travis Sherman, <a href="https://web.archive.org/web/20221203114652/https://math.arizona.edu/~rta/001/sherman.travis/series.pdf">Summation of Glaisher- and Apery-like Series</a>, University of Arizona, May 23 2000, p. 11, (3.48) - (3.52).

%F a(n) = (-1)^n*(f2(n-1)/8)*Product_{k=0..n-2} (2*k+1)^2 where f2(n) corresponds to the y values such that Sum_{k>=0} (-1)^k/(binomial(2*k,k)*(2*k+(2*n+1))) = x*sqrt(5)*log((1+sqrt(5))/2) + y. (See examples for connection with a(n) in terms of material at Links section).

%F From _Vaclav Kotesovec_, Nov 22 2024: (Start)

%F Recurrence: (n-2)*a(n) = (n-1)*(12*n^2 - 36*n + 23)*a(n-1) + 8*(n-2)*(n-1)*(2*n - 5)^3*a(n-2).

%F a(n) ~ sqrt(Pi) * log(2 + sqrt(5)) * n^(2*n - 3/2) * 2^(4*n - 5) / (3*exp(2*n)). (End)

%e Examples ((3.48) - (3.52)) at page 11 in Links section as follows, respectively.

%e For n=0, f2(0) = 0, so a(1) = 0.

%e For n=1, f2(1) = 8, so a(2) = 1.

%e For n=2, f2(2) = -368/9, so a(3) = 46.

%e For n=3, f2(3) = 14792/75, so a(4) = 5547.

%e For n=4, f2(4) = -3311008/3675, so a(5) = 1241628.

%t RecurrenceTable[{a[m+1] == 8*m*(2*m - 1)*a[m] + (-1)^(m + 1)*m * Product[(2*k + 1)^2, {k, 0, m - 2}], a[0] == 0}, a, {m, 0, 15}] (* _Vaclav Kotesovec_, Apr 11 2018 *)

%t nmax = 15; Flatten[{0, 0, Table[CoefficientList[TrigToExp[Expand[FunctionExpand[ Table[FullSimplify[Sum[(-1)^j/(Binomial[2*j, j]*(2*j + (2*m + 1))), {j, 0, Infinity}]]*(-1)^(m + 1)/8 * Product[(2*k + 1)^2, {k, 0, m - 1}], {m, 1, nmax}]]]], Log[1/2 + Sqrt[5]/2]][[n, 1]], {n, 1, nmax}]}] (* _Vaclav Kotesovec_, Apr 11 2018 *)

%o (PARI) a=vector(20); a[1]=0; for(n=2, #a, a[n]=8*(n-1)*(2*n-3)*a[n-1]+(-1)^n*(n-1)*prod(k=0, n-3, (2*k+1)^2)); concat(0, a) \\ _Altug Alkan_, Apr 01 2018

%Y Cf. A302113.

%K nonn

%O 0,4

%A _Detlef Meya_, Apr 01 2018

%E More terms from _Altug Alkan_, Apr 01 2018