Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 May 12 2023 14:20:24
%S 1,2,2,3,5,4,5,10,13,8,8,18,33,34,16,13,35,70,115,89,32,21,74,154,265,
%T 386,233,64,34,154,433,692,1018,1323,610,128,55,317,1166,2838,3048,
%U 3914,4485,1597,256,89,658,3153,10526,18492,13712,15017,15290,4181,512,144
%N T(n,k) = Number of n X k 0..1 arrays with every element equal to 0, 1, 3 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.
%C Table starts
%C ...1....2.....3......5.......8.......13........21.........34...........55
%C ...2....5....10.....18......35.......74.......154........317..........658
%C ...4...13....33.....70.....154......433......1166.......3153.........8468
%C ...8...34...115....265.....692.....2838.....10526......36080.......126064
%C ..16...89...386...1018....3048....18492.....94846.....421570......1921284
%C ..32..233..1323...3914...13712...124046....893236....5075048.....30184552
%C ..64..610..4485..15017...61536...829709...8320747...61236964....475553912
%C .128.1597.15290..57850..277248..5574946..78493707..745344973...7586538720
%C .256.4181.51977.222146.1248512.37461858.737846612.9066111545.120905954176
%H R. H. Hardin, <a href="/A302081/b302081.txt">Table of n, a(n) for n = 1..310</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1).
%F k=2: a(n) = 3*a(n-1) -a(n-2).
%F k=3: a(n) = a(n-1) +7*a(n-2) +4*a(n-3)
%F k=4: a(n) = a(n-1) +14*a(n-2) -a(n-3) -42*a(n-4) -a(n-5) +14*a(n-6) +a(n-7) -a(n-8).
%F k=5: [order 7] for n>9.
%F k=6: [order 32] for n>33.
%F k=7: [order 52] for n>54.
%F Empirical for row n:
%F n=1: a(n) = a(n-1) +a(n-2).
%F n=2: a(n) = 2*a(n-1) +a(n-3) -a(n-4) -2*a(n-6) +a(n-7).
%F n=3: [order 26] for n>27.
%F n=4: [order 92] for n>93.
%e Some solutions for n=5, k=4
%e ..0..1..1..0. .0..1..0..1. .0..1..1..1. .0..1..0..1. .0..0..1..0
%e ..0..0..1..0. .0..0..1..1. .0..1..0..1. .0..1..1..1. .1..0..0..1
%e ..1..0..0..1. .0..1..0..0. .0..0..0..1. .0..1..0..1. .1..0..1..0
%e ..1..0..1..0. .0..1..1..1. .1..1..0..1. .0..1..0..1. .1..0..1..0
%e ..1..0..1..1. .0..1..0..0. .0..0..0..1. .0..1..0..0. .0..1..0..1
%Y Column 1 is A000079(n-1).
%Y Column 2 is A001519(n+1).
%Y Row 1 is A000045(n+1).
%Y Row 2 is A301885.
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_, Mar 31 2018