Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Apr 04 2019 22:43:13
%S 1,2,6,3,15,30,10,5,35,70,210,105,21,42,14,7,77,154,462,231,1155,2310,
%T 770,385,55,110,330,165,33,66,22,11,143,286,858,429,2145,4290,1430,
%U 715,5005,10010,30030,15015,3003,6006,2002,1001,91,182,546,273,1365,2730,910,455,65,130,390,195,39,78,26,13,221,442,1326,663,3315,6630,2210,1105
%N a(n) = A019565(A003188(n)).
%C A squarefree analog of A207901 (and the subsequence consisting of its squarefree terms): Each term is either a divisor or a multiple of the next one, and the terms differ by a single prime factor. Compare also to A284003.
%C For all n >= 0, max(a(n + 1), a(n)) / min(a(n + 1), a(n)) = A094290(n + 1) = prime(valuation(n + 1, 2) + 1) = A000040(A001511(n + 1)). [See _Russ Cox_'s Dec 04 2010 comment in A007814.] - _David A. Corneth_ & _Antti Karttunen_, Apr 16 2018
%H Antti Karttunen, <a href="/A302033/b302033.txt">Table of n, a(n) for n = 0..8191</a>
%F a(n) = A019565(A003188(n)).
%F a(n) = A284003(A064706(n)).
%F a(n+1) = A059897(a(n), A094290(n+1)). - _Peter Munn_, Apr 01 2019
%t Array[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[BitXor[#, Floor[#/2]], 2] &, 72, 0] (* _Michael De Vlieger_, Apr 27 2018 *)
%o (PARI)
%o A003188(n) = bitxor(n, n>>1);
%o A019565(n) = {my(j); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
%o A302033(n) = A019565(A003188(n));
%o (PARI) first(n) = {my(pr = primes(1 + logint(n, 2)), ex = vector(#pr, i, 1), res = vector(n)); res[1] = 1; for(i = 1, n-1, v = valuation(i, 2); res[i + 1] = res[i] * pr[v++] ^ ex[v]; ex[v]*=-1); res}
%Y A permutation of A005117. Subsequence of A207901.
%Y Cf. A302054 (gives the sum of prime divisors).
%Y Cf. A000040, A001511, A003188, A019565, A034947, A059897, A064706, A094290.
%Y Cf. also A277811, A283475, A284003.
%K nonn,easy
%O 0,2
%A _Antti Karttunen_ & _Peter Munn_, Apr 16 2018