login
A301999
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.
12
0, 1, 0, 1, 2, 0, 2, 2, 5, 0, 3, 8, 5, 13, 0, 5, 18, 26, 15, 34, 0, 8, 50, 84, 74, 48, 89, 0, 13, 128, 309, 468, 200, 155, 233, 0, 21, 338, 1108, 2036, 2856, 530, 499, 610, 0, 34, 882, 3979, 10982, 14016, 17800, 1394, 1602, 1597, 0, 55, 2312, 14314, 53440, 122232
OFFSET
1,5
COMMENTS
Table starts
.0....1....1....2.......3........5..........8..........13............21
.0....2....2....8......18.......50........128.........338...........882
.0....5....5...26......84......309.......1108........3979.........14314
.0...13...15...74.....468.....2036......10982.......53440........271596
.0...34...48..200....2856....14016.....122232......813704.......6066698
.0...89..155..530...17800...100176....1366374....12824770.....133115004
.0..233..499.1394..110036...729297...15243860...204666568....2933712940
.0..610.1602.3656..674984..5333386..169636124..3267873712...64653790404
.0.1597.5137.9578.4130664.39000114.1884309898.52110883753.1423142192108
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2)
k=3: a(n) = 5*a(n-1) -7*a(n-2) +4*a(n-3)
k=4: a(n) = 4*a(n-1) -4*a(n-2) +a(n-3)
k=5: [order 11] for n>12
k=6: [order 32] for n>33
k=7: [order 52] for n>54
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3)
n=3: [order 20]
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..1..1. .0..0..1..0
..1..1..0..1. .1..1..0..0. .0..0..0..0. .0..1..0..0. .0..1..0..0
..1..0..1..0. .1..1..0..1. .1..1..1..1. .1..0..1..0. .1..1..0..0
..0..1..0..1. .1..0..1..0. .0..0..1..0. .0..1..0..1. .1..1..1..1
..0..0..1..1. .1..1..0..0. .0..1..0..0. .1..0..1..1. .0..0..1..1
CROSSREFS
Column 2 is A001519.
Row 1 is A000045(n-1).
Row 2 is A175395(n-1).
Sequence in context: A118658 A165912 A301823 * A171936 A375372 A071055
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 30 2018
STATUS
approved