Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 08 2022 08:46:21
%S 1697,4027,6359,8693,11029,13367,15707,18049,20393,22739,25087,27437,
%T 29789,32143,34499,36857,39217,41579,43943,46309,48677,51047,53419,
%U 55793,58169,60547,62927,65309,67693,70079,72467,74857,77249,79643,82039,84437,86837,89239,91643,94049,96457,98867,101279
%N a(n) = n^2 + 2329n + 1697.
%C This quadratic seems to be good at generating many distinct primes. It generates 642 primes for n < 10^3, 5132 primes for n < 10^4, 41224 primes for n < 10^5 and 340009 primes for n < 10^6. The first few primes generated are 1697, 4027, 6359, 8693, 13367, 18049, 20393, 22739, 25087, 27437.
%C The quadratic was first discovered as b(n) = n^2 + 1151n - 1023163 by Steve Trevorrow in 2006 during Al Zimmermann's Prime Generating Polynomials contest (see link). Note that a(n) = b(n + 589).
%C Smallest n such that a(n) is not squarefree is 704; a(704) = 2136929 = 73^2*401 and smallest n such that a(n) is square is 1327; a(1327) = 4853209 = 2203^2. - _Altug Alkan_, Mar 30 2018
%H Colin Barker, <a href="/A301985/b301985.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomial</a>
%H Al Zimmermann, <a href="http://recmath.com/contest/PGP/index.php">Prime Generating Polynomials contest</a>, 2006.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = 2a(n-1) - a(n-2) + 2, a(1) = 1697, a(2) = 4027.
%F From _Colin Barker_, Mar 30 2018: (Start)
%F G.f.: (1697 - 1064*x - 631*x^2) / (1 - x)^3.
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
%F (End)
%t Table[n^2 + 2329 n + 1697, {n, 0, 50}] (* _Vincenzo Librandi_, Mar 31 2018 *)
%o (PARI) a(n) = n^2 + 2329*n + 1697; \\ _Altug Alkan_, Mar 30 2018
%o (PARI) Vec((1697 - 1064*x - 631*x^2) / (1 - x)^3 + O(x^60)) \\ _Colin Barker_, Mar 30 2018
%o (Magma) [n^2+2329*n+1697: n in [0..50]]; // _Vincenzo Librandi_, Mar 31 2018
%Y Cf. A005846, A050267, A050268.
%K nonn,easy
%O 0,1
%A _Dmitry Kamenetsky_, Mar 30 2018