OFFSET
1,2
COMMENTS
Table starts
...1....2....3....5.....8.....13.....21......34.......55........89.......144
...2....5....6....9....14.....22.....35......56.......90.......145.......234
...4...13...16...25....41.....74....132.....239......437.......800......1468
...8...34...40...64...111....219....443.....904.....1860......3856......8015
..16...89..100..169...311....749...1803....4257....10353.....25491.....62623
..32..233..252..441...874...2544...7795...22456....66659....203926....621905
..64..610..632.1156..2454...8705..33860..120603...444357...1715911...6574776
.128.1597.1588.3025..6906..29750.148299..655332..3014296..14863160..72345489
.256.4181.3988.7921.19427.101869.646838.3557239.20467528.129324707.802690313
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..880
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2)
k=3: a(n) = a(n-1) +3*a(n-2) +2*a(n-3)
k=4: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3) for n>4
k=5: a(n) = 2*a(n-1) +3*a(n-2) -a(n-3) -2*a(n-4) -3*a(n-5) +2*a(n-6) for n>8
k=6: [order 11] for n>12
k=7: [order 14] for n>17
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) -a(n-3) for n>5
n=3: a(n) = 2*a(n-1) -a(n-4) for n>6
n=4: a(n) = 2*a(n-1) +a(n-3) -a(n-4) -2*a(n-6) +a(n-7) for n>9
n=5: [order 14] for n>17
n=6: [order 27] for n>32
n=7: [order 47] for n>52
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..1..0. .0..0..1..0
..0..1..0..1. .0..0..0..1. .0..1..0..1. .0..0..1..0. .1..1..1..0
..0..0..0..1. .0..1..0..1. .0..1..0..1. .1..0..1..1. .1..0..1..0
..0..1..1..1. .0..1..1..1. .1..0..1..0. .1..0..0..1. .0..1..0..1
..0..1..0..1. .0..1..0..1. .1..0..1..1. .1..1..0..1. .0..1..0..1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 29 2018
STATUS
approved