Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Oct 14 2020 08:38:41
%S 1,2,10,74,710,8322,115018,1828962,32852526,657188258,14477811178,
%T 348100068698,9067809569750,254354791759298,7642986480897930,
%U 244923580410697938,8337728465913016926,300482221889444825154,11429089791630856291018,457542303069698601849194,19230862148761320966737254,846710680545018639230252418
%N G.f. A(x) satisfies: A(x) = x*(1 + 3*A(x)*A'(x)) / (1 + A(x)*A'(x)).
%C Compare to: C(x) = x*(1 + 2*C(x)*C'(x)) / (1 + C(x)*C'(x)) holds when C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
%H Paul D. Hanna, <a href="/A301932/b301932.txt">Table of n, a(n) for n = 1..400</a>
%F a(n) ~ c * 2^n * n!, where c = 0.181799839377767875340143846... - _Vaclav Kotesovec_, Oct 14 2020
%e G.f.: A(x) = x + 2*x^2 + 10*x^3 + 74*x^4 + 710*x^5 + 8322*x^6 + 115018*x^7 + 1828962*x^8 + 32852526*x^9 + 657188258*x^10 + ...
%e such that A = A(x) satisfies: A = x*(1 + 3*A*A')/(1 + A*A').
%e RELATED SERIES.
%e A(x)*A'(x) = x + 6*x^2 + 48*x^3 + 470*x^4 + 5448*x^5 + 73374*x^6 + 1132000*x^7 + 19752822*x^8 + 385285080*x^9 + 8311631702*x^10 + ...
%o (PARI) {a(n) = my(L=x); for(i=1,n, L = x*(1 + 3*L'*L)/(1 + L'*L +x*O(x^n)) ); polcoeff(L,n)}
%o for(n=1,30,print1(a(n),", "))
%Y Cf. A301930, A301931, A301933.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Mar 28 2018