login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301729
a(0)=1; thereafter positive numbers that are congruent to {0, 1, 3, 5} mod 6.
2
1, 1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 39, 41, 42, 43, 45, 47, 48, 49, 51, 53, 54, 55, 57, 59, 60, 61, 63, 65, 66, 67, 69, 71, 72, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 90, 91, 93, 95, 96, 97
OFFSET
0,3
LINKS
A. V. Shutov, The number of words of a given length in the planar crystallographic groups, (in Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Vol. 302 (2003), Anal. Teor. Chisel i Teor. Funkts. 19, pp. 188-197, 203; translation, in J. Math. Sci. (N.Y.), Vol. 129, No. 3 (2005), pp. 3922-3926 [MR2023041]. See Table 1, line "p31m".
FORMULA
Sum_{n>=1} (-1)^(n+1)/a(n) = log(108)/6 = log(2)/3 + log(3)/2. - Amiram Eldar, Dec 31 2021
MAPLE
f:= proc(n) if n=0 then 1
elif (n mod 4) = 0 then (3*n)/2
elif (n mod 4) = 1 then (3*n-1)/2
elif (n mod 4) = 2 then (3*n)/2
else (3*n+1)/2 fi;
end;
s1 := [seq(f(n), n=0..70)];
MATHEMATICA
Join[{1}, Select[Range[100], MemberQ[{0, 1, 3, 5}, Mod[#, 6]] &]] (* Amiram Eldar, Dec 31 2021 *)
CROSSREFS
Essentially the same as A047273.
Sequence in context: A154611 A189669 A164028 * A047273 A342051 A232744
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 30 2018
STATUS
approved