Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Aug 30 2023 16:45:09
%S 1,6,10,16,22,26,32,38,42,48,54,58,64,70,74,80,86,90,96,102,106,112,
%T 118,122,128,134,138,144,150,154,160,166,170,176,182,186,192,198,202,
%U 208,214,218,224,230,234,240,246,250,256,262,266,272,278,282,288,294
%N Expansion of (1 + 5*x + 4*x^2 + 5*x^3 + x^4)/((1 - x)*(1 - x^3)).
%C Appears to be coordination sequence for node of type V1 in "krd" 2-D tiling (or net). This should be easy to prove by the coloring book method (see link).
%D Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 1st row, 2nd tiling.
%H Vincenzo Librandi, <a href="/A301694/b301694.txt">Table of n, a(n) for n = 0..5000</a>
%H Brian Galebach, <a href="http://probabilitysports.com/tilings.html">Collection of n-Uniform Tilings</a>. See Number 14 from the list of 20 2-uniform tilings.
%H Brian Galebach, <a href="/A250120/a250120.html">k-uniform tilings (k <= 6) and their A-numbers</a>
%H Chaim Goodman-Strauss and N. J. A. Sloane, <a href="https://doi.org/10.1107/S2053273318014481">A Coloring Book Approach to Finding Coordination Sequences</a>, Acta Cryst. A75 (2019), 121-134, also <a href="http://NeilSloane.com/doc/Cairo_final.pdf">on NJAS's home page</a>. Also <a href="http://arxiv.org/abs/1803.08530">arXiv:1803.08530</a>.
%H Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/layers/krd">The krd tiling (or net)</a>
%H Anton Shutov and Andrey Maleev, <a href="https://doi.org/10.1515/zkri-2020-0002">Coordination sequences of 2-uniform graphs</a>, Z. Kristallogr., 235 (2020), 157-166. See supplementary material, krb, vertex u_1.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).
%F G.f.: (1 + 5*x + 4*x^2 + 5*x^3 + x^4)/((1 - x)*(1 - x^3)).
%F a(n) = 6*n - 2*floor((n + 1)/3) for n>0, a(0)=1. - _Bruno Berselli_, Mar 26 2018
%t CoefficientList[Series[(x^4 + 5 x^3 + 4 x^2 + 5 x + 1) / ((1 - x) (1 - x^3)), {x, 0, 80}], x] (* _Vincenzo Librandi_, Mar 26 2018 *)
%o (PARI) lista(nn) = {x='x+O('x^nn); Vec((x^4+5*x^3+4*x^2+5*x+1)/((1-x)*(1-x^3)))} \\ _Altug Alkan_, Mar 26 2018
%o (Magma) I:=[1,6,10,16,22]; [n le 5 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..80]]; // _Vincenzo Librandi_, Mar 26 2018
%o (Magma) [n eq 0 select 1 else 6*n-2*Floor((n+1)/3): n in [0..60]]; // _Bruno Berselli_, Mar 26 2018
%Y Cf. A219529.
%Y Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Mar 25 2018