login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A301685
Partial sums of A301684.
1
1, 5, 13, 25, 43, 65, 93, 127, 163, 205, 253, 303, 359, 421, 485, 555, 631, 709, 793, 883, 975, 1073, 1177, 1283, 1395, 1513, 1633, 1759, 1891, 2025, 2165, 2311, 2459, 2613, 2773, 2935, 3103, 3277, 3453, 3635, 3823, 4013, 4209, 4411, 4615, 4825, 5041, 5259, 5483, 5713, 5945, 6183, 6427, 6673, 6925, 7183, 7443, 7709, 7981
OFFSET
0,2
COMMENTS
Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301684. - Ray Chandler, Aug 30 2023
FORMULA
From Chai Wah Wu, Feb 03 2021: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 8.
G.f.: (2*x^8 - 2*x^6 - 3*x^4 - 3*x^3 - 4*x^2 - 3*x - 1)/((x - 1)^3*(x^2 + x + 1)). (End)
MATHEMATICA
LinearRecurrence[{2, -1, 1, -2, 1}, {1, 5, 13, 25, 43, 65, 93, 127, 163}, 60] (* Harvey P. Dale, Jun 22 2024 *)
CROSSREFS
Cf. A301684.
Sequence in context: A241233 A064276 A240001 * A102724 A147031 A147220
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 25 2018
STATUS
approved