login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301685
Partial sums of A301684.
1
1, 5, 13, 25, 43, 65, 93, 127, 163, 205, 253, 303, 359, 421, 485, 555, 631, 709, 793, 883, 975, 1073, 1177, 1283, 1395, 1513, 1633, 1759, 1891, 2025, 2165, 2311, 2459, 2613, 2773, 2935, 3103, 3277, 3453, 3635, 3823, 4013, 4209, 4411, 4615, 4825, 5041, 5259, 5483, 5713, 5945, 6183, 6427, 6673, 6925, 7183, 7443, 7709, 7981
OFFSET
0,2
COMMENTS
Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301684. - Ray Chandler, Aug 30 2023
FORMULA
From Chai Wah Wu, Feb 03 2021: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 8.
G.f.: (2*x^8 - 2*x^6 - 3*x^4 - 3*x^3 - 4*x^2 - 3*x - 1)/((x - 1)^3*(x^2 + x + 1)). (End)
MATHEMATICA
LinearRecurrence[{2, -1, 1, -2, 1}, {1, 5, 13, 25, 43, 65, 93, 127, 163}, 60] (* Harvey P. Dale, Jun 22 2024 *)
CROSSREFS
Cf. A301684.
Sequence in context: A241233 A064276 A240001 * A102724 A147031 A147220
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 25 2018
STATUS
approved