login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A301670.
1

%I #13 Aug 30 2023 22:29:01

%S 1,5,13,25,41,63,89,115,151,187,231,273,327,377,441,497,569,635,717,

%T 787,879,959,1059,1145,1255,1349,1469,1569,1697,1807,1945,2059,2207,

%U 2331,2487,2617,2783,2921,3097,3241,3425,3579,3773,3931,4135,4303,4515,4689,4911,5093,5325,5513,5753,5951,6201,6403,6663

%N Partial sums of A301670.

%C Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301670. - _Ray Chandler_, Aug 30 2023

%H Ray Chandler, <a href="/A301671/b301671.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 1, 1, -1, -1, -1, 0, 1).

%F From _Chai Wah Wu_, Mar 11 2021: (Start)

%F a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n > 9.

%F G.f.: (2*x^9 - x^8 - 5*x^7 - 16*x^6 - 21*x^5 - 22*x^4 - 19*x^3 - 12*x^2 - 5*x - 1)/((x - 1)^3*(x + 1)^2*(x^2 + 1)*(x^2 + x + 1)). (End)

%Y Cf. A301670.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Mar 25 2018