Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Mar 11 2024 08:31:31
%S 0,1,0,1,1,1,0,2,1,2,0,0,1,1,0,1,0,1,1,1,1,1,0,2,1,1,2,1,0,0,2,1,0,2,
%T 0,1,2,1,1,2,0,2,2,1,2,2,0,0,3,1,0,3,0,1,3,1,1,3,0,2,3,1,2,3,0,0,0,1,
%U 1,0,0,1,0,1,0,1,1,1,0,1,0,2,0,1,1,2,0,1,0,0,1,1
%N Triangle read by rows: row n gives the digits of n in factorial base in reversed order.
%C Row n gives exponents for successive primes 2, 3, 5, 7, 11, etc., in the prime factorization of A276076(n). - _Antti Karttunen_, Mar 11 2024
%H Seiichi Manyama, <a href="/A301652/b301652.txt">Rows n = 0..2000, flattened</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Factoradic">Factorial number system</a>.
%H <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>.
%F T(n,k) = floor(n/k!) mod k+1. - _Tom Edgar_, Aug 15 2018
%e n | 1 2 6
%e ---+---------
%e 0 | 0;
%e 1 | 1;
%e 2 | 0, 1;
%e 3 | 1, 1;
%e 4 | 0, 2;
%e 5 | 1, 2;
%e 6 | 0, 0, 1;
%e 7 | 1, 0, 1;
%e 8 | 0, 1, 1;
%e 9 | 1, 1, 1;
%e 10 | 0, 2, 1;
%e 11 | 1, 2, 1;
%e 12 | 0, 0, 2;
%e 13 | 1, 0, 2;
%e 14 | 0, 1, 2;
%e 15 | 1, 1, 2;
%e 16 | 0, 2, 2;
%e 17 | 1, 2, 2;
%e 18 | 0, 0, 3;
%e 19 | 1, 0, 3;
%t row[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, AppendTo[s, r]; m++]; s]; row[0] = {0}; Array[row, 31, 0] // Flatten (* _Amiram Eldar_, Mar 11 2024 *)
%o (Sage) terms=25; print([0]+[x for sublist in [[floor(n/factorial(i))%(i+1) for i in [k for k in [1..n] if factorial(k)<=n]] for n in [1..terms]] for x in sublist]) # _Tom Edgar_, Aug 15 2018
%Y Triangle A108731 with rows reversed.
%Y Cf. A007623, A034968 (row sums), A208575 (row products), A227153 (products of nonzero terms on row n), A276076, A301593.
%K nonn,tabf,base
%O 0,8
%A _Seiichi Manyama_, Mar 25 2018