login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301621
Numbers not divisible by 2, 3 or 5 (A007775) with digital root 2.
0
11, 29, 47, 83, 101, 119, 137, 173, 191, 209, 227, 263, 281, 299, 317, 353, 371, 389, 407, 443, 461, 479, 497, 533, 551, 569, 587, 623, 641, 659, 677, 713, 731, 749, 767, 803, 821, 839, 857, 893, 911, 929, 947, 983, 1001, 1019, 1037, 1073, 1091, 1109
OFFSET
1,1
COMMENTS
Numbers congruent to 11, 29, 47, or 83 mod 90 with additive sum sequence 11 { + 18 + 18 + 36 + 18} {repeat ...}. Includes all prime numbers greater than 5 with digital root 2.
FORMULA
n == {11, 29, 47, 83} mod 90.
From Colin Barker, Mar 26 2018: (Start)
G.f.: x*(11 + 18*x + 18*x^2 + 36*x^3 + 7*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)
EXAMPLE
11+18=29; 29+18=47; 47+36=83; 83+18=101; 101+18=119.
MATHEMATICA
Flatten[Table[90n - {79, 61, 43, 7}, {n, 30}]] (* Alonso del Arte, Mar 29 2018 *)
PROG
(PARI) Vec(x*(11 + 18*x + 18*x^2 + 36*x^3 + 7*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 26 2018
(GAP) Filtered(Filtered([1..1200], n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0), i->i-9*Int((i-1)/9)=2); # Muniru A Asiru, Apr 22 2018
CROSSREFS
Intersection of A007775 and A017185.
Sequence in context: A249436 A167521 A031338 * A049229 A282538 A236485
KEYWORD
nonn,base,easy
AUTHOR
Gary Croft, Mar 24 2018
STATUS
approved