login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301608
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2 or 3 horizontally or vertically adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 2, 3, 1, 1, 6, 8, 8, 6, 1, 1, 10, 13, 25, 13, 10, 1, 1, 21, 26, 65, 65, 26, 21, 1, 1, 42, 55, 226, 330, 226, 55, 42, 1, 1, 86, 154, 755, 1297, 1297, 755, 154, 86, 1, 1, 179, 356, 2539, 6393, 8888, 6393, 2539, 356, 179, 1, 1, 370, 884, 8794, 30904
OFFSET
1,5
COMMENTS
Table starts
.1..1...1....1......1.......1........1..........1...........1............1
.1..2...2....3......6......10.......21.........42..........86..........179
.1..2...2....8.....13......26.......55........154.........356..........884
.1..3...8...25.....65.....226......755.......2539........8794........30539
.1..6..13...65....330....1297.....6393......30904......154041.......764894
.1.10..26..226...1297....8888....60841.....421168.....2940940.....20639456
.1.21..55..755...6393...60841...591585....5880829....58383932....585233819
.1.42.154.2539..30904..421168..5880829...83224304..1180228568..16849867573
.1.86.356.8794.154041.2940940.58383932.1180228568.23865691820.485485211198
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 18]
k=4: [order 66]
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..1. .0..1..1..1. .0..1..0..1. .0..0..0..0. .0..0..1..1
..0..0..1..1. .1..1..0..1. .1..0..1..0. .0..1..0..0. .0..0..1..1
..1..1..0..0. .1..0..1..1. .0..1..0..1. .0..0..1..0. .0..0..1..1
..1..1..0..0. .1..1..1..0. .1..0..1..0. .1..0..0..0. .0..1..0..0
..1..1..0..0. .1..1..0..1. .0..1..0..1. .0..1..0..0. .0..0..0..0
CROSSREFS
Column 2 is A240513(n-2).
Sequence in context: A317815 A318423 A318091 * A285521 A187451 A134542
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 24 2018
STATUS
approved