login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k at which the ratio r(k) = (k-th prime) / (average of first k primes) reaches a record high.
0

%I #13 Mar 28 2018 05:14:21

%S 1,2,3,4,5,7,9,10,12,17,25,31,35,48

%N Numbers k at which the ratio r(k) = (k-th prime) / (average of first k primes) reaches a record high.

%C Equivalently, define the function f(k) = k*prime(k)/Sum_{j=1..k} prime(j); sequence lists numbers k such that f(k) > f(m) for all m < k.

%C a(14)=48 is the final term. Beyond k=48, r(k) decreases fairly smoothly (although nonmonotonically); see the Example section.

%C For m = 4..18, the first k > 48 at which r(k) < 2 - 1/m is 50, 53, 61, 775, 2678, 8973, 23483, 63535, 159863, 431988, 1091840, 2753459, 7186422, 18479367, 47260890, respectively. Does lim_{k->inf} r(k) equal 2? - _Jon E. Schoenfield_, Mar 27 2018

%e The table below shows k, prime(k), the sum and average of the first k primes, and r(k), for each number k in the sequence, and also for k = 100, 1000, ..., 10^7.

%e .

%e n| a(n)=k prime(k) sum avg r(k)

%e --+--------------------------------------------------------

%e 1| 1 2 2 2.000 1.00000

%e 2| 2 3 5 2.500 1.20000

%e 3| 3 5 10 3.333 1.50000

%e 4| 4 7 17 4.250 1.64706

%e 5| 5 11 28 5.600 1.96429

%e 6| 7 17 58 8.286 2.05172

%e 7| 9 23 100 11.111 2.07000

%e 8| 10 29 129 12.900 2.24806

%e 9| 12 37 197 16.417 2.25381

%e 10| 17 59 440 25.882 2.27955

%e 11| 25 97 1060 42.400 2.28774

%e 12| 31 127 1720 55.484 2.28895

%e 13| 35 149 2276 65.029 2.29130

%e 14| 48 223 4661 97.104 2.29650

%e 100 541 24133 241.330 2.24174

%e 1000 7919 3682913 3682.913 2.15020

%e 10000 104729 496165411 49616.541 2.11077

%e 100000 1299709 62260698721 622606.987 2.08753

%e 1000000 15485863 7472966967499 7472966.967 2.07225

%e 10000000 179424673 870530414842019 87053041.484 2.06110

%Y Cf. A000040 (primes), A007504 (sum of first n primes), A006988 ((10^n)-th prime), A099824 (sum of first 10^n primes).

%K nonn,fini,full

%O 1,2

%A _Jon E. Schoenfield_, Mar 24 2018