login
A301594
Expansion of Product_{k>=1} (1 + x^k)^A001615(k), where A001615 is the Dedekind psi function.
6
1, 1, 3, 7, 13, 27, 55, 99, 185, 341, 604, 1064, 1863, 3181, 5411, 9123, 15167, 25051, 41083, 66715, 107703, 172735, 275034, 435484, 685753, 1073481, 1672160, 2592070, 3998278, 6140196, 9389302, 14296376, 21682534, 32759202, 49308812, 73956692, 110545113
OFFSET
0,3
LINKS
FORMULA
a(n) ~ exp(3^(5/3) * (5*Zeta(3))^(1/3) * n^(2/3) / (2^(4/3) * Pi^(2/3)) - Pi^(2/3) * n^(1/3) / (2^(5/3) * 3^(2/3) * (5*Zeta(3))^(1/3)) - Pi^2 / (2160 * Zeta(3))) * (5*Zeta(3))^(1/6) / (2^(3/4) * 3^(1/6) * Pi^(5/6) * n^(2/3)).
MATHEMATICA
nmax = 40; CoefficientList[Series[Exp[Sum[-(-1)^j * Sum[k*Sum[MoebiusMu[d]^2 / d, {d, Divisors @ k}] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
CROSSREFS
Sequence in context: A298360 A140465 A333653 * A080241 A098479 A119445
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 24 2018
STATUS
approved