login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 + x^k)^(sigma_5(k)).
7

%I #14 Oct 26 2018 16:53:28

%S 1,1,33,277,1829,12763,89213,584741,3704421,22964742,139315315,

%T 826585083,4807922574,27476514016,154490531418,855490577052,

%U 4670177536402,25157218161854,133831334223869,703601883107626,3658023094714380,18817745119097343,95833879532504638

%N Expansion of Product_{k>=1} (1 + x^k)^(sigma_5(k)).

%H Seiichi Manyama, <a href="/A301549/b301549.txt">Table of n, a(n) for n = 0..2000</a>

%F a(n) ~ exp(7 * Pi^(6/7) * Zeta(7)^(1/7) * n^(6/7) / (2^(9/7) * 3^(6/7))) * (3*Zeta(7)/Pi)^(1/14) / (2^(323/504) * sqrt(7) * n^(4/7)).

%F G.f.: exp(Sum_{k>=1} sigma_6(k)*x^k/(k*(1 - x^(2*k)))). - _Ilya Gutkovskiy_, Oct 26 2018

%t nmax = 30; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[5, k], {k, 1, nmax}], {x, 0, nmax}], x]

%o (PARI) x='x+O('x^99); Vec(prod(i=1, 99, (1+x^i)^sigma(i, 5))) \\ _Altug Alkan_, Mar 26 2018

%Y Cf. A001160, A107742, A301543.

%K nonn

%O 0,3

%A _Vaclav Kotesovec_, Mar 23 2018