login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 + x^(4*k))*(1 + x^(4*k-1)).
4

%I #7 Mar 23 2018 05:01:06

%S 1,0,0,1,1,0,0,2,1,0,1,3,2,0,2,5,2,0,4,7,3,1,7,10,4,2,11,14,5,4,17,19,

%T 6,8,25,25,9,13,36,33,12,21,50,43,16,33,69,55,23,49,93,70,32,71,124,

%U 89,45,102,163,112,64,142,212,141,89,195,273,177,123,265,349

%N Expansion of Product_{k>=1} (1 + x^(4*k))*(1 + x^(4*k-1)).

%C Number of partitions of n into distinct parts congruent to 0 or 3 mod 4.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F G.f.: Product_{k>=1} (1 + x^A014601(k)).

%F a(n) ~ exp(Pi*sqrt(n/6)) / (2^(5/2)*3^(1/4)*n^(3/4)). - _Vaclav Kotesovec_, Mar 23 2018

%e a(11) = 3 because we have [11], [8, 3] and [7, 4].

%t nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k)) (1 + x^(4 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

%t nmax = 70; CoefficientList[Series[x QPochhammer[-1, x^4] QPochhammer[-x^(-1), x^4]/(2 (1 + x)), {x, 0, nmax}], x]

%t nmax = 70; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 3}, Mod[k, 4]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

%Y Cf. A014601, A035364, A035457, A131795, A147599, A301504, A301507, A301508.

%K nonn

%O 0,8

%A _Ilya Gutkovskiy_, Mar 22 2018