login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Summarize the double of the previous term (digits in increasing order), starting with a(1) = 1.
0

%I #8 Mar 29 2018 10:13:59

%S 1,12,1214,221418,1213241618,3223242618,121334153618,10322314361718,

%T 10322334361718,10222334461718,10222344361819,10222334261738,

%U 1022134415361718,20323334261728,10121334255618,1021421314153618,20522324261728,1011121354252618,3062131425161718

%N Summarize the double of the previous term (digits in increasing order), starting with a(1) = 1.

%C From 56th term the sequence goes into a cycle of 4 terms: 10222334362819, 1022133415361728, 2032233415361718, 20123344461718.

%e a(1) = 1 and 2*1 = 2 ('one 2') then a(2) = 12;

%e 2*12 = 24 ('one 2, one 4') then a(3) = 1214. And so on.

%p P:=proc(q,h) local a,b,c,j,k,n; a:=h; print(a);

%p for n from 1 to q do a:=convert(2*a,base,10);

%p b:=0; for k from 0 to 9 do c:=0; for j from 1 to nops(a) do

%p if a[j]=k then c:=c+1; fi; od;

%p if c>0 then b:=b*10^(ilog10(c*10+k)+1)+c*10+k; fi; od;

%p a:=b; print(a); od; end: P(10,1); # _Paolo P. Lava_, Mar 22 2018

%Y Cf. A005151.

%K nonn,base,easy

%O 1,2

%A _Paolo P. Lava_, Mar 22 2018