login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 + x^k*A(x)^k)^k.
7

%I #6 Mar 21 2018 17:14:57

%S 1,1,3,12,49,217,1006,4810,23576,117812,597937,3073874,15972678,

%T 83758809,442681653,2355678968,12610759255,67868269712,366979432955,

%U 1992755590086,10862329206524,59414599714958,326009477088080,1793977307978268,9898072238695390,54744525395860053,303463833091357785

%N G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 + x^k*A(x)^k)^k.

%F G.f. A(x) satisfies: A(x) = exp(Sum_{k>=1} (-1)^(k+1)*x^k*A(x)^k/(k*(1 - x^k*A(x)^k)^2)).

%e G.f. A(x) = 1 + x + 3*x^2 + 12*x^3 + 49*x^4 + 217*x^5 + 1006*x^6 + 4810*x^7 + 23576*x^8 + 117812*x^9 + ...

%e G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + x^2*A(x)^2)^2 * (1 + x^3*A(x)^3)^3 * (1 + x^4*A(x)^4)^4 * ...

%e log(A(x)) = x + 5*x^2/2 + 28*x^3/3 + 141*x^4/4 + 751*x^5/5 + 4064*x^6/6 + 22198*x^7/7 + 122381*x^8/8 + ... + A270922(n)*x^n/n + ...

%Y Cf. A026007, A145267, A181315, A270922, A301455.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Mar 21 2018