login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1+x)^n - 3*x*A(x) )^n / 2^(n+1).
11

%I #14 Nov 05 2019 07:24:33

%S 1,5,85,2413,92501,4394663,246960721,15952488893,1161947365721,

%T 94123508334877,8390631582459161,816285612080072183,

%U 86069411025655759073,9778818588385117669485,1191176369495005591666205,154886342347657508336231809,21414816209632043592416524165,3137473307880710686085483679771,485584927860050612832028930482597,79169341280742628145184619086229089

%N G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1+x)^n - 3*x*A(x) )^n / 2^(n+1).

%H Paul D. Hanna, <a href="/A301435/b301435.txt">Table of n, a(n) for n = 0..50</a>

%F G.f. A(x) satisfies:

%F (1) 1 = Sum_{n>=0} ( (1+x)^n - 3*x*A(x) )^n / 2^(n+1).

%F (2) 1 = Sum_{n>=0} (1+x)^(n^2) / (2 + 3*x*A(x)*(1+x)^n)^(n+1). - _Paul D. Hanna_, Jan 10 2019

%F (3) 1 = Sum_{k>=0} (-3*x)^k * A(x)^k * Sum_{n>=0} C(n+k,k) * (1+x)^(n*(n+k)) / 2^(n+k+1).

%F (4) 1 = Sum_{n>=0} Sum_{k=0..n} C(n,k) * (1+x)^(n*(n-k)) / 2^(n+1) * (-3*x)^k * A(x)^k.

%e G.f.: A(x) = 1 + 5*x + 85*x^2 + 2413*x^3 + 92501*x^4 + 4394663*x^5 + 246960721*x^6 + 15952488893*x^7 + 1161947365721*x^8 + 94123508334877*x^9 + ...

%e such that

%e 1 = 1/2 + ((1+x) - 3*x*A(x))/2^2 + ((1+x)^2 - 3*x*A(x))^2/2^3 + ((1+x)^3 - 3*x*A(x))^3/2^4 + ((1+x)^4 - 3*x*A(x))^4/2^5 + ((1+x)^5 - 3*x*A(x))^5/2^6 + ...

%e Also,

%e 1 = 1/(2 + 3*x*A(x)) + (1+x)/(2 + 3*x*A(x)*(1+x))^2 + (1+x)^4/(2 + 3*x*A(x)*(1+x)^2)^3 + (1+x)^9/(2 + 3*x*A(x)*(1+x)^3)^4 + (1+x)^16/(2 + 3*x*A(x)*(1+x)^4)^5 + ...

%e RELATED SERIES.

%e Let R(k,x) = Sum_{n>=0} binomial(n+k,k) * (1+x)^(n*(n+k)) / 2^(n+k+1)

%e then

%e 1 = R(0,x) - 3*x*A(x)*R(1,x) + 3^2*x^2*A(x)^2*R(2,x) - 3^3*x^3*A(x)^3*R(3,x) + 3^4*x^4*A(x)^4*R(4,x) - 3^5*x^5*A(x)^5*R(5,x) + ...

%e The table of coefficients in R(k,x) begins:

%e k=0: [1, 3, 36, 744, 21606, 807912, 36948912, 1997801520, ...];

%e k=1: [1, 10, 197, 5600, 206880, 9387864, 504836996, 31376330400, ...];

%e k=2: [1, 21, 621, 23447, 1078980, 58590504, 3667676768, ...];

%e k=3: [1, 36, 1494, 72516, 4075569, 261336096, 18861815280, ...];

%e k=4: [1, 55, 3050, 185190, 12492745, 934629539, 77091424200, ...];

%e k=5: [1, 78, 5571, 413764, 33004131, 2850142590, 266518090901, ...];

%e k=6: [1, 105, 9387, 837165, 77946645, 7696470411, 810015165897, ...];

%e k=7: [1, 136, 14876, 1568632, 168591350, 18874524760, 2221139481932, ...]; ...

%t nmax = 19;

%t nmax2 = 300 (* = empirical sum terms *);

%t sol = {a[0] -> 1};

%t A[x_] = Sum[a[n] x^n, {n, 0, nmax}];

%t Do[A[x] = A[x] /. sol; s = 1-Sum[((1+x)^n - 3x A[x] + O[x]^(k+1))^n / 2^(n+1), {n, 0, nmax2}] /. sol; c = SeriesCoefficient[s, {x, 0, k}]; sol = sol ~Join~ Solve[c == 0][[1]] /. HoldPattern[a[n_] -> an_] :> (a[n] -> Round[an]), {k, 2, nmax+1}];

%t a /@ Range[0, nmax] /. sol (* _Jean-François Alcover_, Nov 05 2019 *)

%Y Cf. A303288, A301436, A323314, A323315, A323316, A323317, A323318, A323319, A323320, A323321.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Mar 24 2018