login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A301291.
1

%I #10 Jan 31 2023 08:29:52

%S 1,6,15,28,46,69,96,127,163,204,249,298,352,411,474,541,613,690,771,

%T 856,946,1041,1140,1243,1351,1464,1581,1702,1828,1959,2094,2233,2377,

%U 2526,2679,2836,2998,3165,3336,3511,3691,3876,4065,4258,4456,4659

%N Partial sums of A301291.

%H Colin Barker, <a href="/A301292/b301292.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-4,4,-3,1).

%F From _Colin Barker_, Mar 23 2018: (Start)

%F G.f.: (1 + 3*x + x^2 + 3*x^3 + x^4)/((1 - x)^3*(1 + x^2)).

%F a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n > 4.

%F (End)

%F From _Stefano Spezia_, Jan 30 2023: (Start)

%F a(n) = (5 + 9*n*(1 + n) - A087960(n))/4.

%F E.g.f.: (exp(x)*(5 + 18*x + 9*x^2) - cos(x) + sin(x))/4. (End)

%o (PARI) Vec((1 + 3*x + x^2 + 3*x^3 + x^4) / ((1 - x)^3*(1 + x^2)) + O(x^60)) \\ _Colin Barker_, Mar 23 2018

%Y Cf. A087960, A301291.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Mar 23 2018