login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301290
Partial sums of A301289.
1
1, 5, 10, 16, 28, 42, 57, 75, 96, 122, 150, 176, 207, 245, 282, 320, 364, 410, 457, 507, 560, 618, 678, 736, 799, 869, 938, 1008, 1084, 1162, 1241, 1323, 1408, 1498, 1590, 1680, 1775, 1877, 1978, 2080, 2188, 2298, 2409, 2523, 2640, 2762, 2886, 3008, 3135, 3269, 3402, 3536
OFFSET
0,2
COMMENTS
Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301289. - Ray Chandler, Aug 31 2023
FORMULA
From Chai Wah Wu, Feb 03 2021: (Start)
a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 8*a(n-4) + 8*a(n-5) - 7*a(n-6) + 5*a(n-7) - 3*a(n-8) + a(n-9) for n > 9.
G.f.: (2*x^9 - 6*x^8 + 4*x^7 - 6*x^6 - 3*x^4 - 4*x^3 - 2*x - 1)/((x - 1)^3*(x^2 + 1)*(x^2 - x + 1)*(x^2 + x + 1)). (End)
MATHEMATICA
Accumulate[LinearRecurrence[{2, -3, 4, -4, 4, -3, 2, -1}, {1, 4, 5, 6, 12, 14, 15, 18, 21, 26}, 100]] (* Harvey P. Dale, Jun 21 2024 *)
CROSSREFS
Cf. A301289.
Sequence in context: A194275 A026059 A115002 * A152234 A357997 A054514
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 23 2018
STATUS
approved