Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jul 09 2018 19:22:39
%S 1,1,1,1,1,2,1,2,1,1,2,1,1,2,2,2,1,2,1,3,2,2,1,5,1,5,2,1,2,7,2,9,1,4,
%T 6,9,1,11,6,10,2,14,2,15,1,2,12,19,1,18,5,16,2,26,1,24,2,23,26,35,2,
%U 39,31,3,1,40,4,50,6,49,9,61,1,67,68,7,6,70,10,87,2,1,93,102,2,107
%N Number of partitions of n into distinct parts having the same number of prime divisors (counted with multiplicity) as n.
%H Alois P. Heinz, <a href="/A300983/b300983.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) = [x^n] Product_{bigomega(k) = bigomega(n)} (1 + x^k).
%e a(20) = 2 because we have [20] and [12, 8], where 20, 12 and 8 are numbers that are the product of exactly 3 (not necessarily distinct) primes.
%p with(numtheory):
%p a:= proc(m) option remember; local k, b; k, b:= bigomega(m),
%p proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,`if`(n=0, 1,
%p b(n, i-1)+`if`(bigomega(i)=k, b(n-i, min(i-1, n-i)), 0)))
%p end: b(m$2)
%p end:
%p seq(a(n), n=0..100); # _Alois P. Heinz_, Mar 17 2018
%t Table[SeriesCoefficient[Product[(1 + Boole[PrimeOmega[k] == PrimeOmega[n]] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 85}]
%Y Cf. A001222, A300977, A300978, A300979, A300980, A300982.
%K nonn
%O 0,6
%A _Ilya Gutkovskiy_, Mar 17 2018