login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300923
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 16, 20, 16, 1, 1, 40, 76, 76, 40, 1, 1, 113, 290, 593, 290, 113, 1, 1, 304, 1245, 4066, 4066, 1245, 304, 1, 1, 833, 5160, 30474, 48588, 30474, 5160, 833, 1, 1, 2270, 21819, 224767, 640673, 640673, 224767, 21819, 2270, 1, 1, 6194, 91713
OFFSET
1,5
COMMENTS
Table starts
.1....1.....1........1..........1............1..............1................1
.1....3.....5.......16.........40..........113............304..............833
.1....5....20.......76........290.........1245...........5160............21819
.1...16....76......593.......4066........30474.........224767..........1677576
.1...40...290.....4066......48588.......640673........8265835........108469760
.1..113..1245....30474.....640673.....14914968......340365586.......7878577344
.1..304..5160...224767....8265835....340365586....13715723327.....560932609225
.1..833.21819..1677576..108469760...7878577344...560932609225...40555879417852
.1.2270.91713.12501697.1419225976.181974865532.22881004568048.2924437698122344
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +4*a(n-2) +2*a(n-3) -a(n-6)
k=3: [order 21] for n>22
k=4: [order 66] for n>68
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..1..1..0. .0..0..0..1. .0..0..0..1. .0..0..0..0
..0..1..1..1. .1..1..0..0. .0..0..0..0. .0..1..0..0. .0..0..1..0
..1..1..1..1. .1..1..0..0. .0..1..0..1. .0..0..0..1. .0..0..0..1
..0..0..0..0. .0..0..1..1. .1..1..0..0. .0..0..0..0. .0..0..1..1
..0..1..0..0. .0..1..1..0. .1..1..0..0. .0..1..0..1. .0..0..1..0
CROSSREFS
Column 2 is A300533.
Sequence in context: A176700 A300539 A300966 * A301531 A158418 A124925
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 15 2018
STATUS
approved