Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Aug 19 2022 10:54:23
%S 0,0,0,0,0,12,72,252,672,1512,3024,5544,9504,15444,24024,36036,52416,
%T 74256,102816,139536,186048,244188,316008,403788,510048,637560,789360,
%U 968760,1179360,1425060,1710072,2038932,2416512,2848032,3339072,3895584,4523904,5230764
%N a(n) = 12*binomial(n, 5).
%C Also the number of 5-cycles in the complete graph K_n for n >= 1.
%H F. Harary, B. Manvel, <a href="http://dml.cz/dmlcz/126802">On the number of cycles in a graph</a>, Matemat. casop. 21 (1971) 55-63, Theorem 2 for 5-cycles in complete graph.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompleteGraph.html">Complete Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F G.f.: 12*x^5/(x - 1)^6.
%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) + 6*a(n-4) - a(n-5).
%F a(n) = A052787(n)/10 = 12*A000389(n).
%F a(n) = (n - 4)*(n - 3)*(n - 2)*(n - 1)*n/10.
%t Table[12 Binomial[n, 5], {n, 0, 20}]
%t 12 Binomial[Range[0, 20], 5]
%t LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 0, 0, 12, 72}, {0, 20}]
%t CoefficientList[Series[12 x^5/(x - 1)^6, {x, 0, 20}], x]
%o (PARI) a(n) = 12*binomial(n, 5); \\ _Altug Alkan_, Mar 13 2018
%Y Cf. A000389, A052787.
%K nonn,easy
%O 0,6
%A _Eric W. Weisstein_, Mar 13 2018