login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fermi-Dirac factorization prime shift towards smaller terms: a(n) = A052330(floor(A052331(n)/2)).
10

%I #20 Sep 07 2023 13:51:30

%S 1,1,2,3,4,2,5,3,7,4,9,6,11,5,8,13,16,7,17,12,10,9,19,6,23,11,14,15,

%T 25,8,29,13,18,16,20,21,31,17,22,12,37,10,41,27,28,19,43,26,47,23,32,

%U 33,49,14,36,15,34,25,53,24,59,29,35,39,44,18,61,48,38,20,67,21,71,31,46,51,45,22,73,52,79,37,81,30,64,41,50,27

%N Fermi-Dirac factorization prime shift towards smaller terms: a(n) = A052330(floor(A052331(n)/2)).

%C With n having a unique factorization as fdp(i) * fdp(j) * ... * fdp(k), with i, j, ..., k all distinct, a(n) = fdp(i-1) * fdp(j-1) * ... * fdp(k-1), where fdp(0) = 1 and fdp(n) = A050376(n) for n >= 1.

%C Multiplicative because for coprime m and n the Fermi-Dirac factorizations of m and n are disjoint and their union is the Fermi-Dirac factorization of m * n. - _Andrew Howroyd_, Aug 02 2018

%H Antti Karttunen, <a href="/A300840/b300840.txt">Table of n, a(n) for n = 1..65537</a>

%F a(n) = A052330(floor(A052331(n)/2)).

%F For all n >= 1, a(A300841(n)) = n.

%F a(A059897(n,k)) = A059897(a(n), a(k)). - _Peter Munn_, Nov 30 2019

%t fdPrimeQ[n_] := Module[{f = FactorInteger[n], e}, Length[f] == 1 && (2^IntegerExponent[(e = f[[1, 2]]), 2] == e)];

%t prevFDPrime[n_] := Module[{k = n - 1}, While[! fdPrimeQ[k], k--]; k];

%t fd[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Table[If[b[[j]] > 0, p^(2^(m - j)), Nothing], {j, 1, m}]];

%t a[n_] := Times @@ prevFDPrime /@ Flatten[fd @@@ FactorInteger[n]]; a[1] = 1; Array[a, 100] (* _Amiram Eldar_, Sep 07 2023 *)

%o (PARI)

%o up_to_e = 8192;

%o v050376 = vector(up_to_e);

%o A050376(n) = v050376[n];

%o ispow2(n) = (n && !bitand(n,n-1));

%o i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));

%o A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };

%o A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };

%o A300840(n) = A052330(A052331(n)>>1);

%Y A left inverse of A300841.

%Y Cf. A050376, A052330, A052331, A059897.

%Y Cf. also A064989.

%K nonn,mult

%O 1,3

%A _Antti Karttunen_, Apr 13 2018