login
Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
1

%I #4 Mar 13 2018 07:52:08

%S 8,108,1004,9504,90980,872495,8363710,80174942,768542846,7367167560,

%T 70620793761,676962861970,6489288003156,62205568978236,

%U 596295430879394,5716019441254447,54793105139432783,525240405862663157

%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

%C Column 4 of A300811.

%H R. H. Hardin, <a href="/A300807/b300807.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 9*a(n-1) +14*a(n-2) -85*a(n-3) +32*a(n-4) +173*a(n-5) -538*a(n-6) +239*a(n-7) -314*a(n-8) -582*a(n-9) +2609*a(n-10) -6135*a(n-11) +4425*a(n-12) +6902*a(n-13) -11546*a(n-14) +11819*a(n-15) -2599*a(n-16) +5573*a(n-17) +2416*a(n-18) -3913*a(n-19) -7952*a(n-20) -4866*a(n-21) -3412*a(n-22) -9217*a(n-23) -2122*a(n-24) +464*a(n-25) +4111*a(n-26) +2278*a(n-27) +158*a(n-28) +2257*a(n-29) +148*a(n-30) -1659*a(n-31) +32*a(n-32) +273*a(n-33) -349*a(n-34) +47*a(n-35) +134*a(n-36) -32*a(n-37) -20*a(n-38) +9*a(n-39) -a(n-40)

%e Some solutions for n=5

%e ..0..1..1..0. .0..0..1..0. .0..0..1..0. .0..1..1..0. .0..0..1..1

%e ..1..0..0..1. .0..0..1..1. .0..1..0..0. .0..0..1..0. .0..1..0..1

%e ..1..1..0..0. .1..0..0..0. .1..0..1..1. .0..1..0..1. .1..1..0..0

%e ..1..0..1..1. .1..1..1..1. .1..1..1..1. .0..1..0..0. .0..1..1..0

%e ..1..0..1..1. .1..0..0..0. .0..0..1..0. .0..0..1..1. .0..1..0..1

%Y Cf. A300811.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 13 2018