login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = 140*k^3*(n-k)^3 - 14*k*(n-k) + 1; n >= 0, 0 <= k <= n.
10

%I #109 Sep 14 2024 12:31:19

%S 1,1,1,1,127,1,1,1093,1093,1,1,3739,8905,3739,1,1,8905,30157,30157,

%T 8905,1,1,17431,71569,101935,71569,17431,1,1,30157,139861,241753,

%U 241753,139861,30157,1,1,47923,241753,472291,573217,472291,241753,47923,1,1,71569,383965,816229,1119721,1119721,816229,383965,71569,1

%N Triangle read by rows: T(n,k) = 140*k^3*(n-k)^3 - 14*k*(n-k) + 1; n >= 0, 0 <= k <= n.

%C From _Kolosov Petro_, Apr 12 2020: (Start)

%C Let A(m, r) = A302971(m, r) / A304042(m, r).

%C Let L(m, n, k) = Sum_{r=0..m} A(m, r) * k^r * (n - k)^r.

%C Then T(n, k) = L(3, n, k).

%C T(n, k) is symmetric: T(n, k) = T(n, n-k). (End)

%H Muniru A Asiru, <a href="/A300785/b300785.txt">Rows n=0..100 of triangle, flattened</a>.

%H Kolosov Petro, <a href="https://arxiv.org/abs/1603.02468">On the link between Binomial Theorem and Discrete Convolution of Power Function</a>, arXiv:1603.02468 [math.NT], 2016-2022.

%H Petro Kolosov, <a href="https://kolosovpetro.github.io/pdf/PolynomialIdentityInvolvingBTandFaulhaber.pdf">Polynomial identity involving binomial theorem and Faulhaber's formula</a>, 2023.

%H Petro Kolosov, <a href="https://kolosovpetro.github.io/pdf/HistoryAndOverviewOfPolynomialP.pdf">History and overview of the polynomial P_b^m(x)</a>, 2024.

%F From _Kolosov Petro_, Apr 12 2020: (Start)

%F T(n, k) = 140*k^3*(n-k)^3 - 14*k*(n-k) + 1.

%F T(n, k) = 140*A094053(n, k)^3 + 0*A094053(n, k)^2 - 14*A094053(n, k)^1 + 1.

%F T(n+3, k) = 4*T(n+2, k) - 6*T(n+1, k) + 4*T(n, k) - T(n-1, k), for n >= k.

%F Sum_{k=1..n} T(n, k) = A001015(n).

%F Sum_{k=0..n} T(n, k) = A258806(n).

%F Sum_{k=0..n-1} T(n, k) = A001015(n).

%F Sum_{k=1..n-1} T(n, k) = A258808(n).

%F Sum_{k=1..n-1} T(n, k) = -A024005(n).

%F Sum_{k=1..r} T(n, k) = -A316387(3, r, 0)*n^0 + A316387(3, r ,1)*n^1 - A316387(3, r, 2)*n^2 + A316387(3, r, 3)*n^3. (End)

%F G.f.: ((1 + 127*x^6*y^3 - 3*x*(1 + y) + 585*x^5*y^2*(1 + y) + 129*x^4*y*(1 + 17*y + y^2) + 3*x^2*(1 + 45*y + y^2) - x^3*(1 - 579*y - 579*y^2 + y^3))/((1 - x)^4*(1 - x*y)^4). - _Stefano Spezia_, Sep 14 2024

%e Triangle begins:

%e --------------------------------------------------------------------

%e k= 0 1 2 3 4 5 6 7 8

%e --------------------------------------------------------------------

%e n=0: 1;

%e n=1: 1, 1;

%e n=2: 1, 127, 1;

%e n=3: 1, 1093, 1093, 1;

%e n=4: 1, 3739, 8905, 3739, 1;

%e n=5: 1, 8905, 30157, 30157, 8905, 1;

%e n=6: 1, 17431, 71569, 101935, 71569, 17431, 1;

%e n=7: 1, 30157, 139861, 241753, 241753, 139861, 30157, 1;

%e n=8: 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923, 1;

%p T:=(n,k)->140*k^3*(n-k)^3-14*k*(n-k)+1: seq(seq(T(n,k),k=0..n),n=0..9); # _Muniru A Asiru_, Dec 14 2018

%t T[n_, k_] := 140*k^3*(n - k)^3 - 14*k*(n - k) + 1; Column[

%t Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* From _Kolosov Petro_, Apr 12 2020 *)

%o (PARI) t(n, k) = 140*k^3*(n-k)^3-14*k*(n-k)+1

%o trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))

%o /* Print initial 9 rows of triangle as follows */ trianglerows(9)

%o (Magma) /* As triangle */ [[140*k^3*(n-k)^3-14*k*(n-k)+1: k in [0..n]]: n in [0..10]]; // _Bruno Berselli_, Mar 21 2018

%o (Sage) [[140*k^3*(n-k)^3 - 14*k*(n-k)+1 for k in range(n+1)] for n in range(12)] # _G. C. Greubel_, Dec 14 2018

%o (GAP) T:=Flat(List([0..9], n->List([0..n], k->140*k^3*(n-k)^3 - 14*k*(n-k)+1))); # _G. C. Greubel_, Dec 14 2018

%Y Various cases of L(m, n, k): A287326 (m=1), A300656 (m=2), This sequence (m=3). See comments for L(m, n, k).

%Y Row sums give A258806.

%Y Cf. A000584, A287326, A007318, A077028, A294317, A068236, A300656, A302971, A304042, A001015, A094053, A258808, A024005, A316387.

%K nonn,tabl,easy

%O 0,5

%A _Kolosov Petro_, Mar 12 2018